【題目】如圖,已知∠MON,點(diǎn)A在射線OM上.根據(jù)下列方法畫(huà)圖.
①以O為圓心,OA長(zhǎng)為半徑畫(huà)圓,交ON于點(diǎn)B,交射線OM的反向延長(zhǎng)線于點(diǎn)C,連接BC;
②以OA為邊,在∠MON的內(nèi)部,畫(huà)∠AOP=∠OCB;
③連接AB,交OP于點(diǎn)E;
④過(guò)點(diǎn)A作⊙O的切線,交OP于點(diǎn)F.
(1)依題意補(bǔ)全圖形;
(2)求證∠MOP=∠PON;
(3)若∠MON=60°,OF=10,求AE的長(zhǎng).
【答案】(1)如圖所示,見(jiàn)解析;(2)見(jiàn)解析;(3)AE=.
【解析】
(1)題干要求根據(jù)下列方法畫(huà)圖,根據(jù)題意用尺規(guī)補(bǔ)全圖形即可.
(2)題干要求證∠MOP=∠PON,根據(jù)圓周角定理知道∠MON=2∠OCB,從而進(jìn)行分析證明即可.
(3)根據(jù)FA是⊙O的切線,可以知道FA⊥OA,∠MON=60°,利用銳角三角函數(shù)可以求知OA=OB,進(jìn)而求知∠MOP=∠PON,求出AE的長(zhǎng).
解:(1)如圖所示:
(2)∵∠MON=2∠OCB,
∵∠AOP=∠OCB,
∴∠BOP=∠OCB=∠AOP,
即∠MOP=∠PON;
(3)∵∠MON=60°,
∴∠AOP=30°,
∵FA是⊙O的切線,
∴FA⊥OA,
∵OF=10,
∴OA=5,
∵OA=OB,
∴△OAB是等邊三角形,
∵∠MOP=∠PON,
∴OE⊥AB,
∴AE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線于對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.
(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù).
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°).若∠1=110°,則α等于( )
A. 20° B. 30° C. 40° D. 50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知OA=12cm,OB=6cm.點(diǎn)P從點(diǎn)O開(kāi)始沿0A邊向點(diǎn)A以1cm/s的速度移動(dòng);點(diǎn)Q從點(diǎn)B開(kāi)始沿BO邊向點(diǎn)O以1cm/s的速度移動(dòng),如果點(diǎn)P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間(0≤t<6),那么:
(1)設(shè)ΔPOQ的面積為y,求y關(guān)于t的函數(shù)關(guān)系式;
(2)當(dāng)ΔPOQ的面積為4.5cm時(shí),ΔPOQ沿直線PQ翻折后得到ΔPCQ.試判斷點(diǎn)C是否落在直線AB上,并說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△POQ與△AOB相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的自變量x與函數(shù)值y的部分對(duì)應(yīng)值如下表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y=ax2+bx+c | … | t | m | ﹣2 | ﹣2 | n | … |
且當(dāng)x=﹣時(shí),與其對(duì)應(yīng)的函數(shù)值y>0,有下列結(jié)論:①函數(shù)圖象的頂點(diǎn)在第四象限內(nèi);②﹣2和3是關(guān)于x的方程ax2+bx+c=t的兩個(gè)根;③0<m+n<,其中,正確結(jié)論的是( 。
A.①②③B.①②C.①③D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,二次函數(shù)的圖象與x軸的一個(gè)交點(diǎn)為A(3,0),另一個(gè)交點(diǎn)為B,且與y軸交于點(diǎn)C.
(1)求m的值;
(2)求點(diǎn)B的坐標(biāo);
(3)該二次函數(shù)圖像上有一點(diǎn)D(x,y)(其中,),使,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,BC=12cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),如果P,Q兩點(diǎn)同時(shí)出發(fā),分別到達(dá)B,C兩點(diǎn)后就停止移動(dòng).
(1)設(shè)運(yùn)動(dòng)開(kāi)始后第t秒鐘后,五邊形APQCD的面積為Scm2,寫(xiě)出S與t 的函數(shù)關(guān)系式,并指出自變量t的取值范圍.
(2)t為何值時(shí),S最小?最小值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac<0;②當(dāng)x>﹣1時(shí),y隨x增大而減;③a+b+c<0;④若方程ax2+bx+c﹣m=0沒(méi)有實(shí)數(shù)根,則m>2; ⑤3a+c<0.其中正確結(jié)論的個(gè)數(shù)是( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知矩形AOCB,AB=6cm,BC=16cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向點(diǎn)O運(yùn)動(dòng),直到點(diǎn)O為止;動(dòng)點(diǎn)Q同時(shí)從點(diǎn)C出發(fā),以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),與點(diǎn)P同時(shí)結(jié)束運(yùn)動(dòng).
(1)當(dāng)運(yùn)動(dòng)時(shí)間為2s時(shí),P、Q兩點(diǎn)的距離為 cm;
(2)請(qǐng)你計(jì)算出發(fā)多久時(shí),點(diǎn)P和點(diǎn)Q之間的距離是10cm;
(3)如圖2,以點(diǎn)O為坐標(biāo)原點(diǎn),OC所在直線為x軸,OA所在直線為y軸,1cm長(zhǎng)為單位長(zhǎng)度建立平面直角坐標(biāo)系,連結(jié)AC,與PQ相交于點(diǎn)D,若雙曲線過(guò)點(diǎn)D,問(wèn)k的值是否會(huì)變化?若會(huì)變化,說(shuō)明理由;若不會(huì)變化,請(qǐng)求出k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com