【題目】實(shí)驗(yàn)探究:
(1)動(dòng)手操作:
①如圖1,將一塊直角三角板DEF放置在直角三角板ABC上,使三角板DEF的兩條直角邊DE、DF分別經(jīng)過點(diǎn)B、C,且BC∥EF,已知∠A=30°,則∠ABD+∠ACD=
②如圖2,若直角三角板ABC不動(dòng),改變等腰直角三角板DEF的位置,使三角板DEF的兩條直角邊DE、DF仍然分別經(jīng)過點(diǎn)B、C,那么∠ABD+∠ACD=

(2)猜想證明:
如圖3,∠BDC與∠A、∠B、∠C之間存在著 關(guān)系
(3)靈活應(yīng)用:
請你直接利用以上結(jié)論,解決以下列問題:
①如圖4,BE平分∠ABD,CE平分∠ACB,若∠BAC=40°,∠BDC=120°,∠BEC
②如圖5,∠ABD,∠ACD的10等分線相交于點(diǎn)F1、F2、…、F9
若∠BDC=120°,∠BF3C=64°,則∠A的度數(shù)為

【答案】60°;60°;猜想:∠A+∠B+∠C=∠BDC;證明:連接BC,在△DBC中,∵∠DBC+∠DCB+∠D=180°,∴∠DBC+∠DCB=180°﹣∠BDC;在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,而∠DBC+∠DCB=180°﹣∠BDC,∴∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,即:∠A+∠B+∠C=∠BDC.;80°;40°
【解析】解:(1)動(dòng)手操作:
①∵BC∥EF,
∴∠DBC=∠E=∠F=∠DCB=45°,
∴∠ABD=90°﹣45°=45°,∠ACD=60°﹣45°=15°,
∴∠ABD+∠ACD=60°;
②在△DBC中,∵∠DBC+∠DCB+∠D=180°,
而∠D=90°,
∴∠DBC+∠DCB=90°;
在Rt△ABC中,
∵∠ABC+∠ACB+∠A=180°,
即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,
而∠DBC+∠DCB=90°,
∴∠ABD+∠ACD=90°﹣∠A=60°.
故答案為60°;60°;
(2)猜想:∠A+∠B+∠C=∠BDC;
證明:連接BC,
在△DBC中,∵∠DBC+∠DCB+∠D=180°,
∴∠DBC+∠DCB=180°﹣∠BDC;
在Rt△ABC中,
∵∠ABC+∠ACB+∠A=180°,
即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,
而∠DBC+∠DCB=180°﹣∠BDC,
∴∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC,
即:∠A+∠B+∠C=∠BDC.
(3)靈活應(yīng)用:
①由(2)可知∠A+∠ABD+∠ACD=∠BDC,∠A+∠ABE+∠ACE=∠BEC,
∵∠BAC=40°,∠BDC=120°,
∴∠ABD+∠ACD=120°﹣40°=80°
∵BE平分∠ABD,CE平分∠ACB,
∴∠ABE+∠ACE=40°,
∴∠BEC=40°+40°=80°;
②由(2)可知:∠A+∠ABD+∠ACD=∠BDC=120°,∠ABF3+∠ACF3=∠BF3C=64°,
∵∠ABF3=∠ABD,∠ACF3=∠ACD,
∴ABD+∠ACD=120°﹣∠A,∠A+(∠ABD+∠ACD)=64°,
∴∠A+(120°﹣∠A)=64°,
∴∠A=40°,
故答案為40°.
(1)在△DBC中,根據(jù)三角形內(nèi)角和定理得∠DBC+∠DCB+∠D=180°,然后把∠D=90°代入計(jì)算即可;
   。2)根據(jù)三角形內(nèi)角和定理得∠ABC+∠ACB+∠A=180°,∠DBC+∠DCB+∠D=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠A=180°,即可求得∠A+∠ABD+∠ACD=180°﹣(180°﹣∠BDC)=∠BDC;
    (3)應(yīng)用(2)的結(jié)論即可求得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知yz的一次函數(shù),zx的正比例函數(shù)

(1)問:yx的一次函數(shù)嗎?

(2)若當(dāng)x5時(shí)y2;當(dāng)x=-3時(shí),y6,求當(dāng)x1時(shí)y的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在有理數(shù)2、3、-4、-5、6中,任取兩個(gè)數(shù)相乘所得積最大是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對應(yīng)點(diǎn)B′.
(1)補(bǔ)全△A′B′C′根據(jù)下列條件,利用網(wǎng)格點(diǎn)和三角板畫圖:
(2)畫出AB邊上的中線CD;
(3)畫出BC邊上的高線AE;
(4)△A′B′C′的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作平行四邊形ABDE,連接AD,EC.

(1)求證:ADC≌△ECD;

(2)當(dāng)點(diǎn)D在什么位置時(shí),四邊形ADCE是矩形,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°,則下列結(jié)論:
①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.
其中正確的個(gè)數(shù)有多少個(gè)?( 。

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明袋子中有1個(gè)紅球,1個(gè)綠球和n個(gè)白球,這些球除顏色外無其他差別.

(1)當(dāng)n=1時(shí),從袋中隨機(jī)摸出1個(gè)球,摸到紅球和摸到白球的可能性是否相同?

(2)從袋中隨機(jī)摸出一個(gè)球,記錄其顏色,然后放回,大量重復(fù)該實(shí)驗(yàn),發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于0.25,則n的值是 ;

(3)當(dāng)n=2時(shí),先從袋中任意摸出1個(gè)球不放回,再從袋中任意摸出1個(gè)球,請用列表或畫樹狀圖的方法,求兩次都摸到白球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,將一副直角三角板放在同一條直線AB上,其中∠ONM=30°,∠OCD=45°.
(1)將圖①中的三角板OMN沿BA的方向平移至圖②的位置,MN與CD相交于點(diǎn)E,求∠CEN的度數(shù);
(2)將圖①中的三角板OMN繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至如圖③,當(dāng)∠CON=5∠DOM時(shí),MN與CD相交于點(diǎn)E,請你判斷MN與BC的位置關(guān)系,并求∠CEN的度數(shù)
(3)將圖①中的三角板OMN繞點(diǎn)O按每秒5°的速度按逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,三角板MON運(yùn)動(dòng)幾秒后直線MN恰好與直線CD平行.
(4)將如圖①位置的兩塊三角板同時(shí)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),速度分別每秒20°和每秒10°,當(dāng)其中一個(gè)三角板回到初始位置時(shí),兩塊三角板同時(shí)停止轉(zhuǎn)動(dòng).經(jīng)過多少秒后邊OC與邊ON互相垂直.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角坐標(biāo)系中,點(diǎn)A(3,4)與點(diǎn)B(3,﹣4)關(guān)于(

A.x軸軸對稱B.y軸軸對稱C.原點(diǎn)中心對稱D.以上都不對

查看答案和解析>>

同步練習(xí)冊答案