精英家教網 > 初中數學 > 題目詳情

【題目】如圖所示,已知二次函數y=ax2+bx+c的圖象與x軸交于A、B兩點,與y軸交于點C對稱軸為直線x=1.直線y=﹣x+c與拋物線y=ax2+bx+c交于C、D兩點,D點在x軸下方且橫坐標小于3,則下列結論:

①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.

其中正確的有( 。

A. 4個 B. 3個 C. 2個 D. 1個

【答案】A

【解析】利用拋物線與y軸的交點位置得到c>0,利用對稱軸方程得到b=﹣2a,則2a+b+c=c>0,于是可對①進行判斷;利用拋物線的對稱性得到拋物線與x軸的另一個交點在點(﹣1,0)右側,則當x=﹣1時,y<0,于是可對②進行判斷;根據二次函數的性質得到x=1時,二次函數有最大值,則ax2+bx+c≤a+b+c,于是可對③進行判斷;由于直線y=﹣x+c與拋物線y=ax2+bx+c交于C、D兩點,D點在x軸下方且橫坐標小于3,利用函數圖象得x=3時,一次函數值比二次函數值大,即9a+3b+c<﹣3+c,然后把b=﹣2a代入解a的不等式,則可對④進行判斷.

∵拋物線與y軸的交點在x軸上方,

c>0,

∵拋物線的對稱軸為直線x=﹣=1,

b=﹣2a,

2a+b+c=2a﹣2a+c=c>0,所以①正確;

∵拋物線與x軸的一個交點在點(3,0)左側,

而拋物線的對稱軸為直線x=1,

∴拋物線與x軸的另一個交點在點(﹣1,0)右側,

∴當x=﹣1時,y<0,

a﹣b+c<0,所以②正確;

x=1時,二次函數有最大值,

ax2+bx+c≤a+b+c,

ax2+bx≤a+b,所以③正確;

∵直線y=﹣x+c與拋物線y=ax2+bx+c交于C、D兩點,D點在x軸下方且橫坐標小于3,

x=3時,一次函數值比二次函數值大,

9a+3b+c<﹣3+c,

b=﹣2a,

9a﹣6a<﹣3,解得a<﹣1,所以④正確,

故選A.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,,,均是等邊三角形,由這3個等邊三角形組成一個新圖形,現有下列結論:①;②是一個平角;③;④新圖形是一個軸對稱圖形,并且只有一條對稱軸其中正確的結論有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8cm,BC=6cm,點P從點A出發(fā),以lcm/s的速度沿A→D→C方向勻速運動,同時點Q從點A出發(fā),以2cm/s的速度沿A→B→C方向勻速運動,當一個點到達點C時,另一個點也隨之停止.設運動時間為t(s),APQ的面積為S(cm2),下列能大致反映St之間函數關系的圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】 在建設社會主義新農村過程中,某村委決定投資開發(fā)項目,現有6個項目可供選擇,各項目所需資金及預計年利潤如下表:

所需資金(億元)

1

2

4

6

7

8

預計利潤(千萬元)

0.2

0.35

0.55

0.7

0.9

1

1)上表反映了哪兩個變量之間的關系?哪個是自變量?哪個是因變量?

2)如果預計要獲得0.9千萬元的利潤,你可以怎樣投資項目?

3)如果該村可以拿出10億元進行多個項目的投資,預計最大年利潤是多少?說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(問題解決)

一節(jié)數學課上,老師提出了這樣一個問題:如圖1,點P是正方形ABCD內一點,PA=1,PB=2,PC=3.你能求出∠APB的度數嗎?

小明通過觀察、分析、思考,形成了如下思路:

思路一:將BPC繞點B逆時針旋轉90°,得到BP′A,連接PP′,求出∠APB的度數;

思路二:將APB繞點B順時針旋轉90°,得到CP'B,連接PP′,求出∠APB的度數.

請參考小明的思路,任選一種寫出完整的解答過程.

(類比探究)

如圖2,若點P是正方形ABCD外一點,PA=3,PB=1,PC=,求∠APB的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】數學課上,陳老師對我們說,如果1條線段將一個三角形分成2個等腰三角形,那么這1條線段就稱為這個三角形的好線,如果2條線段將一個三角形分成3個等腰三角形,那么這2條線段就稱為這個三角形的好好線

(1)如圖,在△ABC中,∠A36°,∠C72°,請你在這個三角形中畫出它的好線,并標出等腰三角形頂角的度數.

(2)如圖,已知△ABC是一個頂角為45°的等腰三角形,請你在這個三角形中畫出它的好好線,并標出所分得的等腰三角形底角的度數.

(應用)

(3)△ABC中,已知一個內角為42°,若它只有好線,請你寫出這個三角形最大內角的度數:___ ___ (寫出其中兩種情形即可)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司分兩次采購甲、乙兩種商品,具體情況如下:

商品

花費資金

次數

第一次采購件數

10

15

350

第二次采購件數

15

10

375

1)求甲、乙商品每件各多少元?

2)公司計劃第三次采購甲、乙兩種商品共31件,要求花費資金不超過475元,問最多可購買甲商品多少件?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】給下列證明過程填寫理由.

如圖,CDABD,點FBC上任意一點,EFABE,∠1=∠2,求證:ACB=∠3

請閱讀下面解答過程,并補全所有內容.

解:CDAB,EFAB(已知)

∴∠BEF=∠BDC=90°

EFDC

∴∠2=________

∵∠2=∠1(已知)

∴∠1=_______(等量代換)

DGBC

∴∠3=________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形是矩形,點的坐標為,點C的坐標為,把矩形沿折疊,點落在點處,則點的縱坐標為(

A. -2B. -2.4C. -2D. -2

查看答案和解析>>

同步練習冊答案