【題目】9分)如圖所示,某數(shù)學(xué)活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67tan48°≈1.11,≈1.73

【答案】13.

【解析】

試題根據(jù)矩形性質(zhì)得出DG=CHCG=DH,再利用銳角三角函數(shù)的性質(zhì)求出問題即可.

試題解析:如圖,過點DDG⊥BCG,DH⊥CEH,

則四邊形DHCG為矩形.

DG=CHCG=DH,

在直角三角形AHD中,

∵∠DAH=30°,AD=6

∴DH=3,AH=3,

∴CG=3

設(shè)BCx,

在直角三角形ABC中,AC==,

∴DG=3+,BG=x﹣3,

在直角三角形BDG中,∵BG=DGtan30°,

∴x﹣3=3+

解得:x≈13,

大樹的高度為:13米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,點D,E,F(xiàn)分別是△ABC邊AB,BC,AC的中點,連接DE,EF,要使四邊形ADEF是正方形,還需增加條件:_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD,AE分別是△ABC的高和角平分線,

1)若∠ABC=30°,∠ACB=50°,求∠DAE的度數(shù)

2)寫出∠DAE與∠C-B的數(shù)量關(guān)系,并證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某人在大樓30米高(PH=30)的窗口P處進行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i1,P,H,B,C,A在同一個平面上,H,B,C在同一條直線上,PHHC.A,B兩點間的距離是(  )

A. 15 B. 20 C. 20 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀一段文字,再回答下列問題:

已知在平面內(nèi)兩點坐標(biāo)P1(x1,y1),P2(x2y2),其兩點間距離公式為 ,同時,當(dāng)兩點所在的直線在坐標(biāo)軸上或平行于x軸或垂直于x軸距離公式可簡化成|x2-x1||y2-y1|

(1)已知A(3,5),B(-2-1),試求AB兩點的距離;

(2)已知A、B在平行于y軸的直線上,點A的縱坐標(biāo)為5,點B的縱坐標(biāo)為-1,試求A,B兩點的距離.

(3)已知一個三角形各頂點坐標(biāo)為A(0,6),B(-3,2),C(3,2),你能斷定此三角形的形狀嗎?說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC 中,ABAC12 厘米,∠B=∠C,BC8 厘米,點 D AB 的中點.如果點 P 在線段 BC 上以 2 厘米/ 的速度由 B 點向 C 點運動,同時,點 Q 在線段 CA 上由 C 點向 A 點運動.若點 Q 的運動速度為 v 厘米/秒,則當(dāng)BPD CQP 全等時,v 的值為(

A.2B.5C.1 5D.2 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DEABE,DFACF,若BDCD,BECF,則下列結(jié)論:①DEDF;②AD平分∠BAC;③AEAD;④ACAB2BE中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BC的垂直平分線交AB于點D,交BC于點E,若∠A=50°,DCB=2∠ACD,則∠B的度數(shù)為(

A.26°B.36°C.52°D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黑板上寫有12,3,2019,20202020個自然數(shù),對它們進行操作,每次操作規(guī)則如下:擦掉寫在黑板上的三個數(shù)后,再添寫上所擦掉三個數(shù)之和的個位數(shù)字,例如:擦掉5,132010后,添加上8;若再擦掉8,8,38,添上4,等等.如果經(jīng)過1004次操作后,發(fā)現(xiàn)黑板上剩下兩個數(shù),一個是29,求另一個數(shù).

查看答案和解析>>

同步練習(xí)冊答案