【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,則下列結(jié)論:①DE=DF;②AD平分∠BAC;③AE=AD;④AC﹣AB=2BE中正確的是_____.
【答案】①②④
【解析】
利用“HL”證明Rt△BDE和Rt△CDF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得DE=DF,再根據(jù)到角的兩邊距離相等的點(diǎn)在角的平分線上判斷出AD平分∠BAC,然后利用“HL”證明Rt△ADE和Rt△ADF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AE=AF,再根據(jù)圖形表示出表示出AE、AF,再整理即可得到AC﹣AB=2BE.
解:在Rt△BDE和Rt△CDF中,
,
∴Rt△BDE≌Rt△CDF(HL),
∴DE=DF,故①正確;
又∵DE⊥AB,DF⊥AC,
∴AD平分∠BAC,故②正確;
在Rt△ADE和Rt△ADF中,
,
∴Rt△ADE≌Rt△ADF(HL),
∴AE=AF,
∴AB+BE=AC﹣FC,
∴AC﹣AB=BE+FC=2BE,
即AC﹣AB=2BE,故④正確;
由垂線段最短可得AE<AD,故③錯(cuò)誤,
綜上所述,正確的是①②④.
故答案為:①②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,P為等邊△ABC的邊AB上一點(diǎn),Q為BC延長(zhǎng)線上一點(diǎn),且PA=CQ,連PQ交AC邊于
點(diǎn)D.
(1)證明:PD=DQ.
(2)如圖2,過P作PE⊥AC于E,若AB=2,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=30°,點(diǎn)A1,A2,A3,…在射線ON上,點(diǎn)B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA1=1,則△A8B8A9的邊長(zhǎng)_________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)如圖所示,某數(shù)學(xué)活動(dòng)小組選定測(cè)量小河對(duì)岸大樹BC的高度,他們?cè)谛逼律?/span>D處測(cè)得大樹頂端B的仰角是30,朝大樹方向下坡走6米到達(dá)坡底A處,在A處測(cè)得大樹頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,AB=BC,∠ABC=90°,F 為 AB 延長(zhǎng)線上一點(diǎn),點(diǎn) E 在BC 上,且 AE=CF.
(1)求證: AE⊥CF;
(2)若∠CAE=25°,求∠ACF 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師所留的作業(yè)中有這樣一個(gè)分式的計(jì)算題:,甲、乙兩位同學(xué)完成的過程分別如下:
老師發(fā)現(xiàn)這兩位同學(xué)的解答都有錯(cuò)誤.
請(qǐng)你從甲、乙兩位同學(xué)中,選擇一位同學(xué)的解答過程,幫助他分析錯(cuò)因,并加以改正.
(1)我選擇 同學(xué)的解答過程進(jìn)行分析.(填“甲”或“乙”)該同學(xué)的解答從第 步開始出現(xiàn)錯(cuò)誤,錯(cuò)誤的原因是 ;
(2)請(qǐng)重新寫出完成此題的正確解答過程.
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,為中點(diǎn),延長(zhǎng)交于點(diǎn),其滿足,為上一點(diǎn),且于點(diǎn).下列判斷:①線段是的角平分線;②是邊上的中線;③線段是的邊上的高;④.其中判斷正確的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于、B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)E,其中.
求該一次函數(shù)和反比例函數(shù)的解析式;
若點(diǎn)D是x軸正半軸上一點(diǎn),且,連接OB、BD,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點(diǎn),E、F分別是線段BM、CM的中點(diǎn)
(1)求證:△ABM≌△DCM
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;
(3)當(dāng)AD:AB= _時(shí),四邊形MENF是正方形(只寫結(jié)論,不需證明)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com