【題目】如圖,中,,為中點,延長交于點,其滿足,為上一點,且于點.下列判斷:①線段是的角平分線;②是邊上的中線;③線段是的邊上的高;④.其中判斷正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
【答案】C
【解析】
①根據(jù)三角形的角平分線、三角形的中線、三角形的高的概念進行判斷.②根據(jù)三角形的中線定義判斷.③根據(jù)高線的定義進行判斷.④根據(jù)外角與內(nèi)角的關(guān)系進行判斷.
∵∠1=∠2,
∴AD平分∠BAC.
即AG是△ABE的角平分線,所以①正確;
∵G為AD中點,
∴AG=DG,
∴BG是△ABD邊AD上的中線.所以②錯誤;
∵BE⊥AC,
∴AE⊥BG,
∴線段AE是△ABG的邊BG上的高.所以③正確;
根據(jù)三角形外角的性質(zhì),∠1+∠AFH=∠1+∠FBC+∠FCB=90°,所以∠1+∠FBC+∠FCB=90°,故④正確.
綜上所述,正確的個數(shù)是3個.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知于點D,AE平分
(1)試探究與的關(guān)系;
(2)若F是AE上一動點,當(dāng)F移動到AE之間的位置時,,如圖2所示,此時的關(guān)系如何?
(3)若F是AE上一動點,當(dāng)F繼續(xù)移動到AE的延長線上時,如圖3,,①中的結(jié)論是否還成立?如果成立請說明理由,如果不成立,寫出新的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀一段文字,再回答下列問題:
已知在平面內(nèi)兩點坐標(biāo)P1(x1,y1),P2(x2,y2),其兩點間距離公式為 ,同時,當(dāng)兩點所在的直線在坐標(biāo)軸上或平行于x軸或垂直于x軸距離公式可簡化成|x2-x1|或|y2-y1|.
(1)已知A(3,5),B(-2,-1),試求A,B兩點的距離;
(2)已知A、B在平行于y軸的直線上,點A的縱坐標(biāo)為5,點B的縱坐標(biāo)為-1,試求A,B兩點的距離.
(3)已知一個三角形各頂點坐標(biāo)為A(0,6),B(-3,2),C(3,2),你能斷定此三角形的形狀嗎?說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,則下列結(jié)論:①DE=DF;②AD平分∠BAC;③AE=AD;④AC﹣AB=2BE中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的對角線長為2,將正方形ABCD沿直線EF折疊,則圖中陰影部分的周長為( 。
A. 8 B. 4 C. 8 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC的垂直平分線交AB于點D,交BC于點E,若∠A=50°,∠DCB=2∠ACD,則∠B的度數(shù)為( )
A.26°B.36°C.52°D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)畫出△ABC關(guān)于y軸的對稱圖形,其中A、B、C的對應(yīng)點分別為,,
(2)= .
(3)畫出以為腰的等腰△CAD,點D在y軸右側(cè)的小正方形的頂點上,且△CAD的面積為6 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知O為坐標(biāo)原點,長方形ABCD(點A與坐標(biāo)原點重合)的頂點D、B分別在x軸、y軸上,且點C的坐標(biāo)為(-4,8),連接BD,將△ABD沿直線BD翻折至△ABD,交CD于點E.
(1)求S△BED的面積;
(2)求點A坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示為一機器零件的三視圖.
(1)請寫出符合這個機器零件形狀的幾何體的名稱.
(2)若俯視圖中三角形為正三角形,那么請根據(jù)圖中所標(biāo)的尺寸,計算這個幾何體的表面積(單位:cm2).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com