【題目】如圖所示,二次函數(shù)y=ax2x+c的圖象經(jīng)過點(diǎn)A0,1),B3, ),A點(diǎn)在y軸上,過點(diǎn)BBCx軸,垂足為點(diǎn)C

(1)求直線AB的解析式和二次函數(shù)的解析式;

(2)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)NAB上方),過NNP⊥x軸,垂足為點(diǎn)P,交AB于點(diǎn)M,求MN的最大值;

(3)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)NAB上方),是否存在點(diǎn)N,使得BMNC相互垂直平分?若存在,求出所有滿足條件的N點(diǎn)的坐標(biāo);若不存在,說明理由.

【答案】1y=x+1y=x2x+1;(2)當(dāng)m=﹣時(shí),MN取最大值,最大值為;(3)存在點(diǎn)N,使得BM與NC相互垂直平分,點(diǎn)N的坐標(biāo)為(﹣1,4

【解析】試題分析:1)根據(jù)已知點(diǎn)的坐標(biāo)利用待定系數(shù)法即可得出結(jié)論;
2設(shè)點(diǎn)N的坐標(biāo)為 則點(diǎn)M的坐標(biāo)為

用含的代數(shù)式表示出來,結(jié)合二次函數(shù)的性質(zhì)即可解決最值問題;
3)假設(shè)存在,設(shè)點(diǎn)N的坐標(biāo)為連接,當(dāng)四邊形為菱形時(shí), 相互垂直平分,根據(jù)算出的值,從而得出點(diǎn)的坐標(biāo),再去驗(yàn)證是否等于,由此即可得出結(jié)論.

試題解析:(1)設(shè)直線AB的解析式為:y=kx+b,

∴直線AB的解析式為:

代入 ,

∴二次函數(shù)的解析式為:

(2)設(shè)點(diǎn)N的坐標(biāo)為 則點(diǎn)M的坐標(biāo)為

∴當(dāng) 時(shí),MN取最大值,最大值為

(3)假設(shè)存在,設(shè)點(diǎn)N的坐標(biāo)為連接BN、CM,如圖所示.

若要BMNC相互垂直平分,只需四邊形BCMN為菱形即可。

∵點(diǎn)B坐標(biāo)為 點(diǎn)C的坐標(biāo)為(3,0),

BC=52.

∵四邊形BCMN為菱形,

解得:

當(dāng)m=2時(shí),點(diǎn)N的坐標(biāo)為

m=2(舍去);

當(dāng)m=1時(shí),點(diǎn)N的坐標(biāo)為(1,4),

∴點(diǎn)N(1,4)符合題意.

故存在點(diǎn)N,使得BMNC相互垂直平分,點(diǎn)N的坐標(biāo)為(1,4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是線段AB上一點(diǎn),C、D兩點(diǎn)分別從P、B出發(fā)以1cm/s、2 cm/s的速度沿直線AB向左運(yùn)動(dòng)(C在線段AP上,D在線段BP上)

(1)C、D運(yùn)動(dòng)到任一時(shí)刻時(shí),總有PD=2AC,請(qǐng)說明P點(diǎn)在線段AB上的位置:

(2)(1)的條件下,Q是直線AB上一點(diǎn),且AQ-BQ=PQ,求的值。

(3)(1)的條件下,若C、D運(yùn)動(dòng)5秒后,恰好有,此時(shí)C點(diǎn)停止運(yùn)動(dòng),D點(diǎn)繼續(xù)運(yùn)動(dòng)(D點(diǎn)在線段PB上),M、N分別是CD、PD的中點(diǎn),下列結(jié)論:①PM-PN的值不變;②的值不變,可以說明,只有一個(gè)結(jié)論是正確的,請(qǐng)你找出正確的結(jié)論并求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)E在正方形邊上(不與點(diǎn)B,C重合),是對(duì)角線,延長到點(diǎn)F,使,過點(diǎn)E的垂線,垂足為G,連接,

1)根據(jù)題意補(bǔ)全圖形,并證明;

2用等式表示線段的數(shù)量關(guān)系,并證明;

用等式表示線段,之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)C、AD在同一條直線上,∠ABC=∠ADE=α,線段 BD、CE交于點(diǎn)M

(1)如圖1,若AB=AC,AD=AE

①問線段BDCE有怎樣的數(shù)量關(guān)系?并說明理由;②求∠BMC的大。ㄓα表示);

(2)如圖2,若AB= BC=kAC,AD =ED=kAE 則線段BDCE的數(shù)量關(guān)系為 ,∠BMC= (用α表示);

(3)在(2)的條件下,把△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)180°,在備用圖中作出旋轉(zhuǎn)后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡),連接 EC并延長交BD于點(diǎn)M.則∠BMC= (用α表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】城市規(guī)劃期間,欲拆除一電線桿AB,已知距電線桿AB水平距離14 mD處有一大壩,背水坡CD的坡度i=12,壩高CF2 m,在壩頂C處測得桿頂A的仰角為30°,D、E之間是寬為2 m的人行道.

(1)BF的長;

(2)在拆除電線桿AB時(shí),為確保行人安全,是否需要將此人行道封上?請(qǐng)說明理由.(在地面上,以點(diǎn)B為圓心,以AB長為半徑的圓形區(qū)域?yàn)槲kU(xiǎn)區(qū)域,≈1.732,≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,C是O上一點(diǎn),ODBC于點(diǎn)D,過點(diǎn)C作O的切線,交OD的延長線于點(diǎn)E,連接BE.

(1)求證:BE與O相切;

(2)設(shè)OE交O于點(diǎn)F,若DF=1,BC=2,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)運(yùn)算是數(shù)學(xué)學(xué)科核心素養(yǎng)之一,某校對(duì)七年級(jí)學(xué)生數(shù)學(xué)運(yùn)算能力情況進(jìn)行調(diào)研,從該校360名七年級(jí)學(xué)生中抽取了部分學(xué)生進(jìn)行運(yùn)算能力測試井進(jìn)行分析,成績分為A、B、C三個(gè)層次,繪制了頻數(shù)分布表(如下),請(qǐng)根據(jù)圖表信息解答下列問題:

1)補(bǔ)全頻數(shù)分布;

2)如果成績?yōu)?/span>A等級(jí)的同學(xué)屬于優(yōu)秀,請(qǐng)你估計(jì)該校七年級(jí)約有多少人達(dá)到優(yōu)秀水平?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OC平分∠MON,POC上一點(diǎn),PAOM,PBON,垂足分別為A、B,連接AB,得到以下結(jié)論:(1PA=PB;(2OA=OB;(3OPAB互相垂直平分;(4OP平分∠APB,正確的個(gè)數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情景:如圖1,ABCD,PAB=130°,PCD=120°,求∠APC的度數(shù).

(1)天天同學(xué)看過圖形后立即口答出:∠APC=110°,請(qǐng)你補(bǔ)全他的推理依據(jù).

如圖2,過點(diǎn)PPEAB,

ABCD,

PEABCD.(___)

∴∠A+APE=180°.

C+CPE=180°.(___)

∵∠PAB=130°,PCD=120°

∴∠APE=50°,CPE=60°

∴∠APC=APE+CPE=110°.(___)

問題遷移:

(2)如圖3,ADBC,當(dāng)點(diǎn)PA. B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠ADP=α,∠BCP=β,求∠CPD與∠α、∠β之間有何數(shù)量關(guān)系?請(qǐng)說明理由。

(3)(2)的條件下,如果點(diǎn)PA. B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A. B. O三點(diǎn)不重合),請(qǐng)你直接寫出∠CPD與∠α、∠β之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案