【題目】如圖,需在一面墻上繪制幾個(gè)相同的拋物線型圖案.按照圖中的直角坐標(biāo)系,最左邊的拋物線可以用y=ax2+bx(a≠0)表示.已知拋物線上B,C兩點(diǎn)到地面的距離均為 m,到墻邊OA的距離分別為 m, m.
(1)求該拋物線的函數(shù)關(guān)系式,并求圖案最高點(diǎn)到地面的距離;
(2)若該墻的長度為10m,則最多可以連續(xù)繪制幾個(gè)這樣的拋物線型圖案?
【答案】
(1)解:根據(jù)題意得:B( , ),C( , ),
把B,C代入y=ax2+bx得 ,
解得: ,
∴拋物線的函數(shù)關(guān)系式為y=﹣x2+2x;
∴圖案最高點(diǎn)到地面的距離= =1
(2)解:令y=0,即﹣x2+2x=0,
∴x1=0,x2=2,
∴10÷2=5,
∴最多可以連續(xù)繪制5個(gè)這樣的拋物線型圖案
【解析】(1)根據(jù)題意求得B( , ),C( , ),解方程組求得拋物線的函數(shù)關(guān)系式為y=﹣x2+2x;根據(jù)拋物線的頂點(diǎn)坐標(biāo)公式得到結(jié)果;(2)令y=0,即﹣x2+2x=0,解方程得到x1=0,x2=2,即可得到結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx﹣2(k>0)與雙曲線 在第一象限內(nèi)的交點(diǎn)R,與x軸、y軸的交點(diǎn)分別為P、Q.過R作RM⊥x軸,M為垂足,若△OPQ與△PRM的面積相等,則k的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知長方形ABCD中AB=8cm,BC=10cm,在邊CD上取一點(diǎn)E,將△ADE折疊使點(diǎn)D恰好落在BC邊上的點(diǎn)F,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,BD為AC邊上的中線,過點(diǎn)C作于點(diǎn)E,過點(diǎn)A作BD的平行線,交CE的延長線于點(diǎn)F,在AF的延長線上截取,連接BG,DF.
求證:;
求證:四邊形BDFG為菱形;
若,,求四邊形BDFG的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為x=1,給出下列結(jié)論:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正確的結(jié)論是 . (寫出正確命題的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,試求∠DFB和∠DGB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=a外有一點(diǎn)P,畫點(diǎn)P關(guān)于直線OA的對稱點(diǎn)P′,再作點(diǎn)P′關(guān)于直線OB的對稱點(diǎn)P″.
(1)試猜想∠POP″與a的大小關(guān)系,并說出你的理由.
(2)當(dāng)P為∠AOB 內(nèi)一點(diǎn)或∠AOB邊上一點(diǎn)時(shí),上述結(jié)論是否成立?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的3個(gè)頂點(diǎn)都在5×5的網(wǎng)格(每個(gè)小正方形的邊長均為1個(gè)單位長度)的格點(diǎn)上,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)到△A′BC′的位置,且點(diǎn)A′、C′仍落在格點(diǎn)上,則線段AB掃過的圖形面積是平方單位(結(jié)果保留π).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com