【題目】如圖所示,在△ABC中,BP、CP分別是∠ABC和∠ACB的角平分線,∠BPC=134°,求∠A的度數(shù).

【答案】88°.

【解析】

BPC中,利用三角形內(nèi)角和定理先求出∠1+2=46°,再根據(jù)三角形角平分線的定義可得到∠ABC+ACB=2(1+2)=92°,在ABC中,再利用三角形內(nèi)角和定理即可求得∠A的度數(shù).

∵在BPC中,∠BPC=134°,

∴∠1+2=180°﹣BPC=180°﹣134°=46°,

BP、CP分別是∠ABC和∠ACB的角平分線,

∴∠ABC=21,ACB=22,

∴∠ABC+ACB=21+22=2(1+2)=2×46°=92°,

∴在ABC中,∠A=180°﹣(ABC+ACB)=180°﹣92°=88°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)x2+2x﹣9999=0
(2)2x2﹣2x﹣1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BD,CE是△ABC的兩條高,直線BD,CE相交于點H.

(1)若∠BAC=100°,求∠DHE的度數(shù);

(2)若△ABC中∠BAC=50°,直接寫出∠DHE的度數(shù)是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,P是AD上一動點,O為BD的中點,連接PO并延長,交BC于點Q.

(1) 求證:四邊形PBQD是平行四邊形

(2) 若AD=6cm,AB=4cm, 點P從點A出發(fā),以1cm/s的速度向點D運動(不與點D重合),設(shè)點P運動時間為t s , 請用含t的代數(shù)式表示PD的長,并求出當t為何值時,四邊形PBQD是菱形。并求出此時菱形的周長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知過點(2,-1),與軸交于點A,F點為(1,2).

(Ⅰ)求的值及A點的坐標;

(Ⅱ)將函數(shù)的圖象沿方向向上平移得到函數(shù),其圖象與軸交于點Q,且OQ=QF,求平移后的函數(shù)的解析式;

(Ⅲ)若點A關(guān)于的對稱點為K,請求出直線FK與軸的交點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:平面內(nèi)點A到圖形G上各個點的距離的最小值稱為該點到這個圖形的最小距離d,點A到圖形G上各個點的距離的最大值稱為該點到這個圖形的最大距離D,定義點A到圖形G的距離跨度為R=D﹣d.
(1)①如圖1,在平面直角坐標系xOy中,圖形G1為以O(shè)為圓心,2為半徑的圓,直接寫出以下各點到圖形G1的距離跨度: A(1,0)的距離跨度;
B(﹣ , )的距離跨度;
C(﹣3,﹣2)的距離跨度;
②根據(jù)①中的結(jié)果,猜想到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是
(2)如圖2,在平面直角坐標系xOy中,圖形G2為以D(﹣1,0)為圓心,2為半徑的圓,直線y=k(x﹣1)上存在到G2的距離跨度為2的點,求k的取值范圍.
(3)如圖3,在平面直角坐標系xOy中,射線OP:y= x(x≥0),⊙E是以3為半徑的圓,且圓心E在x軸上運動,若射線OP上存在點到⊙E的距離跨度為2,直接寫出圓心E的橫坐標xE的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l:,過點M(1,0)作x軸的垂線交直線l于點N,過點N作直線l的垂線交x軸于點M1;過點M1x軸的垂線交直線lN1,過點N1作直線l的垂線交x軸于點M2,…;按此作法繼續(xù)下去,則點M5的坐標為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解家長關(guān)注孩子成長方面的狀況,學(xué)校開展了針對學(xué)生家長的“您最關(guān)心孩子哪方面成長”的主題調(diào)查,調(diào)查設(shè)置了“健康安全”、“日常學(xué)習(xí)”、“習(xí)慣養(yǎng)成”、“情感品質(zhì)”四個項目,并隨機抽取甲、乙兩班共100位學(xué)生家長進行調(diào)查,根據(jù)調(diào)查結(jié)果,繪制了如圖不完整的條形統(tǒng)計圖.
(1)補全條形統(tǒng)計圖.
(2)若全校共有3600位學(xué)生家長,據(jù)此估計,有多少位家長最關(guān)心孩子“情感品質(zhì)”方面的成長?
(3)綜合以上主題調(diào)查結(jié)果,結(jié)合自身現(xiàn)狀,你更希望得到以上四個項目中哪方面的關(guān)注和指導(dǎo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,需在一面墻上繪制幾個相同的拋物線型圖案.按照圖中的直角坐標系,最左邊的拋物線可以用y=ax2+bx(a≠0)表示.已知拋物線上B,C兩點到地面的距離均為 m,到墻邊OA的距離分別為 m, m.
(1)求該拋物線的函數(shù)關(guān)系式,并求圖案最高點到地面的距離;
(2)若該墻的長度為10m,則最多可以連續(xù)繪制幾個這樣的拋物線型圖案?

查看答案和解析>>

同步練習(xí)冊答案