【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),另一動(dòng)點(diǎn)N同時(shí)從點(diǎn)B出發(fā),以1cm/s的速度沿著邊BA向點(diǎn)A運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),設(shè)點(diǎn)M運(yùn)動(dòng)時(shí)間為x(s),△AMN的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( 。
A. B. C. D.
【答案】A
【解析】
分三種情況進(jìn)行討論,當(dāng)0≤x≤1時(shí),當(dāng)1≤x≤2時(shí),當(dāng)2≤x≤3時(shí),分別求得△ANM的面積,列出函數(shù)解析式,根據(jù)函數(shù)圖象進(jìn)行判斷即可.
由題可得,BN=x,
當(dāng)0≤x≤1時(shí),M在BC邊上,BM=3x,AN=3﹣x,則
S△ANM=AN·BM,
∴y=×(3﹣x)×3x=﹣x2+x,故C選項(xiàng)錯(cuò)誤;
當(dāng)1≤x≤2時(shí),M點(diǎn)在CD邊上,則
S△ANM=AN·BC,
∴y=(3﹣x)×3=﹣x+,故D選項(xiàng)錯(cuò)誤;
當(dāng)2≤x≤3時(shí),M在AD邊上,AM=9﹣3x,
∴S△ANM=AM·AN,
∴y=·(9﹣3x)·(3﹣x)=(x﹣3)2,故B選項(xiàng)錯(cuò)誤;
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△C;平移△ABC,若A的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(0,4),畫出平移后對(duì)應(yīng)的△;
(2)若將△C繞某一點(diǎn)旋轉(zhuǎn)可以得到△,請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo);
(3)在軸上有一點(diǎn)P,使得PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)活動(dòng)–探究特殊的平行四邊形.
問(wèn)題情境
如圖,在四邊形中,為對(duì)角線,,.請(qǐng)你添加條件,使它們成為特殊的平行四邊形.
提出問(wèn)題
第一小組添加的條件是“”,則四邊形是菱形.請(qǐng)你證明;
第二小組添加的條件是“,”,則四邊形是正方形.請(qǐng)你證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,.,點(diǎn)是上一點(diǎn),以為圓心作,
若經(jīng)過(guò)、兩點(diǎn),求的半徑,并判斷點(diǎn)與的位置關(guān)系.
若和、都相切,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,點(diǎn)E、F是BC、CD的中點(diǎn),且AE⊥BC,AF⊥CD.
(1)求證:AB=AD.
(2)請(qǐng)你探究∠EAF,∠BAE,∠DAF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,過(guò)點(diǎn)D作DE∥AC且DE=OC,連接CE、OE,連接AE交OD于點(diǎn)F.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長(zhǎng)為4,∠ABC=60°,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,lA、lB分別表示A步行與B騎車在同一路上行駛的路程S與時(shí)間t的關(guān)系.
(1)B出發(fā)時(shí)與A相距______千米;
(2)走了一段路后,自行車發(fā)生故障,進(jìn)行修理,所用的時(shí)間是______小時(shí);
(3)B再次出發(fā)后______小時(shí)與A相遇;
(4)求出A行走的路程S與時(shí)間t的函數(shù)關(guān)系式(寫出過(guò)程);
(5)若B的自行車不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn),幾小時(shí)與A相遇?在圖中表示出這個(gè)相遇點(diǎn)C.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠甲、乙兩個(gè)部門各有員工400人,為了解這兩個(gè)部門員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)補(bǔ)充完整.
收集數(shù)據(jù)
從甲、乙兩個(gè)部門各隨機(jī)抽取20名員工,進(jìn)行了生產(chǎn)技能測(cè)試,測(cè)試成績(jī)(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述數(shù)據(jù)
按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
成績(jī) 人數(shù) 部門 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(說(shuō)明:成績(jī)80分及以上為生產(chǎn)技能優(yōu)秀,70--79分為生產(chǎn)技能良好,60--69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)
分析數(shù)據(jù)
兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:
部門 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
得出結(jié)論:
.估計(jì)乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為_(kāi)___________;
.可以推斷出_____________部門員工的生產(chǎn)技能水平較高,理由為_(kāi)____________.(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 xOy 中,直線 y x 4與 x 軸、y 軸分別交于點(diǎn) A、點(diǎn) B,點(diǎn) D 在 y 軸的負(fù)半軸上,若將△DAB 沿著直線 AD 折疊,點(diǎn) B 恰好落在 x 軸正半軸上的點(diǎn) C處.
(1)求直線 CD 的表達(dá)式;
(2)在直線 AB 上是否存在一點(diǎn) P,使得 SPCD SOCD?若存在,直接寫出點(diǎn) P 的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com