【題目】如圖,中,,,點上一點,以為圓心作,

經(jīng)過、兩點,求的半徑,并判斷點的位置關(guān)系.

、都相切,求的半徑.

【答案】的半徑為,點的半徑為

【解析】

(1)設(shè)點D是AC的中點,連接CM,DM,易得CM=AM=BM,繼而求得⊙M的半徑,并判斷點B與⊙M的位置關(guān)系.
(2)首先連接EM,FM,可得四邊形CEMF是正方形,設(shè)EM=x,則CE=x,由△AEM∽△ACB,根據(jù)相似三角形的對應邊成比例求得答案.

經(jīng)過、兩點,

的垂直平分線上,

設(shè)點的中點,連接,,

,

的中點,

,

連接

中,,,,

,

的半徑為,點上.

連接,

都相切,

,,

,

∴四邊形是正方形,

設(shè),則,

,

,

,

,

解得:

的半徑為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,,點開始沿折線的速度運動,點開始沿邊以的速度移動,如果點分別從、同時出發(fā),當其中一點到達時,另一點也隨之停止運動,設(shè)運動時間為,當________時,四邊形也為矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

小聰遇到這樣一個有關(guān)角平分線的問題:如圖1,在中,,平分,,求的長.

小聰思考:因為平分,所以可在邊上取點,使,連接.這樣很容易得到,經(jīng)過推理能使問題得到解決(如圖2).

請回答:(1   三角形.

2的長為   

參考小聰思考問題的方法,解決問題:

3)如圖3,已知中,,平分.求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】端午節(jié)期間,某食品店平均每天可賣出300只粽子,賣出1只粽子的利潤是1元.經(jīng)調(diào)查發(fā)現(xiàn),零售單價每降0.1元,每天可多賣出100只粽子.為了使每天獲取的利潤更多,該店決定把零售單價下降m(0<m<1)元.

(1)零售單價下降m元后,該店平均每天可賣出_____只粽子,利潤為_____元.

(2)在不考慮其他因素的條件下,當m定為多少時,才能使該店每天獲取的利潤是420元并且賣出的粽子更多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】心理學研究發(fā)現(xiàn),一般情況下,在一節(jié)分鐘的課中,學生的注意力隨學習時間的變化而變化.開始學習時,學生的注意力逐步增強,中間有一段時間學生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學生的注意力開始分散.經(jīng)過實驗分析可知,學生的注意力指標數(shù)隨時間(分鐘)的變化規(guī)律如下圖所示(其中、分別為線段,為雙曲線的一部分).

求注意力指標數(shù)與時間(分鐘)之間的函數(shù)關(guān)系式;

開始學習后第分鐘時與第分鐘時相比較,何時學生的注意力更集中?

某些數(shù)學內(nèi)容的課堂學習大致可分為三個環(huán)節(jié):即教師引導,回顧舊知;自主探索,合作交流;總結(jié)歸納,鞏固提高.其中教師引導,回顧舊知環(huán)節(jié)分鐘;重點環(huán)節(jié)自主探索,合作交流這一過程一般

需要分鐘才能完成,為了確保效果,要求學習時的注意力指標數(shù)不低于.請問這樣的課堂學習安排是否合理?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10)閱讀下列材料:

1)關(guān)于x的方程x2-3x+1=0x≠0)方程兩邊同時乘以得: ,

2a3+b3=a+b)(a2-ab+b2);a3-b3=a-b)(a2+ab+b2).

根據(jù)以上材料,解答下列問題:

1x2-4x+1=0x≠0),則= ______ , = ______ = ______ ;

22x2-7x+2=0x≠0),求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,動點M從點B出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達點A停止運動,另一動點N同時從點B出發(fā),以1cm/s的速度沿著邊BA向點A運動,到達點A停止運動,設(shè)點M運動時間為x(s),AMN的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在復習課上,彭老師提出了一個問題,假如你是彭老師的學生,你能解決這個問題嗎?試試吧!

命題有兩邊和其中一邊上的中線對應相等的兩個三角形全等是真命題嗎?若是,請畫出圖形,寫出已知、求證和證明:如不是,請舉出反例.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 RtABC 中,∠BAC=90°AB=6,AC=8,D AC 上一點,將ABD 沿 BD 折疊,使點 A 恰好落在 BC 上的 E 處,則折痕 BD 的長是(

A.5B.C.3 D.

查看答案和解析>>

同步練習冊答案