【題目】填空,完成下面題目的解答,如圖,直線AB、CD被直線EF所截,H為CD與EF的交點,∠1=,∠2=,GH⊥CD,垂足為H.
解:因為GH⊥CD(已知),
所以∠2+∠3= (垂直的定義).
因為∠2=(已知),
所以∠3==.
所以∠3=∠4=( ),
又因為∠1=(已知),
所以∠1=∠4,
所以AB∥ ( ).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小剛身高180cm,他站立在陽光下的影子長為90cm,他把手臂豎直舉起,此時影子長為115cm,那么小剛的手臂超出頭頂cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著地球上的水資源日益枯竭,各級政府越來越重視節(jié)約用水.某市民生活用水按“階梯水價”方式進(jìn)行收費,人均月生活用水收費標(biāo)準(zhǔn)如圖所示,圖中 x 表示人均月生活用水的噸數(shù),y 表示收取的人均月生活用水費(元).請根據(jù)圖象信息,回答下列問題:
(1)該市人均月生活用水的收費標(biāo)準(zhǔn)是:不超過 5 噸,每噸按 元收取; 超過 5 噸的部分,每噸按 元收。
(2)當(dāng) x>5 時,求 y 與 x 的函數(shù)關(guān)系式;
(3)若某個家庭有 5 人,五月份的生活用水費共 76 元,則該家庭這個月用了多少噸生活用水?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題
(1)計算:( ﹣π)0﹣6tan30°+( )﹣2+|1﹣ |.
(2)解不等式組 ,并寫出它的所有整數(shù)解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,F(xiàn)G、AC是直徑,AB是弦,F(xiàn)G⊥AB,垂足為點P,過點C的直線交AB的延長線于點D,交GF的延長線于點E,已知AB=4,⊙O的半徑為 .
(1)分別求出線段AP、CB的長;
(2)如果OE=5,求證:DE是⊙O的切線;
(3)如果tan∠E= ,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知l1⊥l2 , ⊙O與l1 , l2都相切,⊙O的半徑為2cm.矩形ABCD的邊AD,AB分別與l1 , l2重合,AB=4 cm,AD=4cm.若⊙O與矩形ABCD沿l1同時向右移動,⊙O的移動速度為3cm/s,矩形ABCD的移動速度為4cm/s,設(shè)移動時間為t(s).
(1)如圖②,兩個圖形移動一段時間后,⊙O到達(dá)⊙O1的位置,矩形ABCD到達(dá)A1B1C1D1的位置,此時點O1 , A1 , C1恰好在同一直線上,則移動時間t= .
(2)在移動過程中,圓心O到矩形對角線AC所在直線的距離在不斷變化,設(shè)該距離為d(cm).當(dāng)d<2時,求t的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,為厲行節(jié)能減排,倡導(dǎo)綠色出行,某公司擬在我市甲、乙兩個街道社區(qū)投放一批共享單車(俗稱“小黃車”),這批自行車包括A、B兩種不同款型.
成本單價 (單位:元) | 投放數(shù)量 (單位:輛) | 總價(單位:元) | |
A型 | x | 50 | 50x |
B型 | x+10 | 50 |
|
成本合計(單位:元) | 7500 |
問題1:看表填空
如圖2所示,本次試點投放的A、B型“小黃車”共有 輛;用含有x的式子表示出B型自行車的成本總價為 ;
問題2:自行車單價
試求A、B兩型自行車的單價各是多少?
問題3:投放數(shù)量
現(xiàn)在該公司采取如下方式投放A型“小黃車”:甲街區(qū)每100人投放n輛,乙街區(qū)每100人投放(n+2)輛,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個街區(qū)共有人,求甲街區(qū)每100人投放A型“小黃車”的數(shù)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列解題過程,然后解答問題
解方程:|x+3|=2.
解:當(dāng)x+3≥0時,原方程可化為:x+3=2,解得x=﹣1
當(dāng)x+3<0時,原方程可化為:x+3=﹣2,解得x=﹣5
所以原方程的解是x=﹣1,x=﹣5
(1)解方程:|3x﹣2|﹣4=0;
(2)探究:當(dāng)b為何值時,方程|x﹣2|=b ①無解;②只有一個解;③有兩個解.
(3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠BAC的平分線與線段BC的垂直平分線PQ相交于點P,過點P分別作PN垂直于AB于點N,PM垂直于AC于點M,BN和CM有什么數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com