【題目】如圖,已知在△ABC中,∠BAC的平分線與線段BC的垂直平分線PQ相交于點(diǎn)P,過點(diǎn)P分別作PN垂直于AB于點(diǎn)N,PM垂直于AC于點(diǎn)M,BN和CM有什么數(shù)量關(guān)系?請(qǐng)說明理由.

【答案】BN=CM,理由見解析.

【解析】試題分析:連接PB,PC,根據(jù)角平分線性質(zhì)求出PM=PN,根據(jù)線段垂直平分線求出PB=PC,根據(jù)HLRt△PMC≌Rt△PNB,即可得出答案.

試題解析:BN=CM,理由如下:

如圖,連接PB,PC,

∵AP是∠BAC的平分線,PN⊥AB,PM⊥AC,

∴PM=PN,∠PMC=∠PNB=90°,

∵P在BC的垂直平分線上,

∴PC=PB,

在Rt△PMC和Rt△PNB中, ,

∴Rt△PMC≌Rt△PNB(HL),

∴BN=CM.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空,完成下面題目的解答,如圖,直線AB、CD被直線EF所截,H為CD與EF的交點(diǎn),∠1=,∠2=,GH⊥CD,垂足為H.

解:因?yàn)镚H⊥CD(已知),

所以∠2+∠3= (垂直的定義).

因?yàn)椤?=(已知),

所以∠3==

所以∠3=∠4=( ),

又因?yàn)椤?=(已知),

所以∠1=∠4,

所以AB∥ ( ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,且ABCDEFAD上兩點(diǎn),CEADBFAD.若CEa,BFbEFc,則AD的長(zhǎng)為(

A. a+cB. b+cC. ab+cD. a+bc

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】餃子(如圖1)源于古代的角子,餃子原名“嬌耳”,相傳是我國(guó)醫(yī)圣張仲景首先發(fā)明的,距今已有一千八百多年的歷史了.有一句民謠叫“大寒小寒,吃餃子過年.”包餃子時(shí),將面團(tuán)揉成長(zhǎng)條狀,后用刀切或用手揪成一個(gè)個(gè)小面團(tuán),這些小面團(tuán)就是箕(jì)子(如圖2).搟皮時(shí),將箕子壓扁后搟成圓形面皮,一個(gè)面箕子可以搟出一個(gè)餃子皮(如圖3),就可以用來包餃子了.

中國(guó)北方,尤其是在京、津地區(qū)流行的一種面食﹣合子(如圖4),含有團(tuán)團(tuán)圓圓的美好寓意.用兩層餃子皮在中間加一層餡,就可以包成一個(gè)合子.北方有風(fēng)俗曰:初一的餃子、初二的面、初三的合子往家轉(zhuǎn).

小亮的媽媽喜愛研究中華美食,自己動(dòng)手經(jīng)常給家人做出色香味俱佳的食品.媽媽在傳承古人的做法的同時(shí),也進(jìn)行了加工創(chuàng)新.在每次包餃子臨近結(jié)束時(shí),如果餃子餡少了,餃子皮多了,這時(shí)媽媽會(huì)停止包餃子,改包合子,這樣既不浪費(fèi)食材,家人既吃到了餃子又吃到了合子.

這天,媽媽從廚房走到書房,對(duì)正在學(xué)習(xí)的小亮說:“媽媽剛才在廚房包餃子,結(jié)果面和多了,做了88個(gè)餃子箕,最后包了餃子和合子一共是81個(gè).”

小亮說:“媽媽,我能用剛剛學(xué)到的列一元一次方程解應(yīng)用題的知識(shí)和方法得出您包的餃子和合子分別是多少.”

請(qǐng)你寫出小亮同學(xué)的解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),且∠MPN∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于M、N兩點(diǎn),則以下結(jié)論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長(zhǎng)不變,其中正確的個(gè)數(shù)為(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,D為⊙O上一點(diǎn),過 上一點(diǎn)T作⊙O的切線TC,且TC⊥AD于點(diǎn)C.
(1)若∠DAB=50°,求∠ATC的度數(shù);
(2)若⊙O半徑為2,CT= ,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一塊直角三角板DEF放置在ABC上,三角板DEF的兩條直角邊DEDF恰好分別經(jīng)過點(diǎn)B、CABC中,∠A=50°,求∠DBA+DCA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:( 1+2cos45°+| ﹣1|﹣(3.14﹣π)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤?10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

(1)甲隊(duì)成績(jī)的中位數(shù)是 分,乙隊(duì)成績(jī)的眾數(shù)是 分;

(2)計(jì)算乙隊(duì)的平均成績(jī)和方差;

(3)已知甲隊(duì)成績(jī)的方差是1.4,則成績(jī)較為整齊的是 隊(duì).

查看答案和解析>>

同步練習(xí)冊(cè)答案