【題目】如圖,已知反比例函數(shù) 的圖象經(jīng)過第二象限內(nèi)的點(diǎn)A(﹣1,m),AB⊥x軸于點(diǎn)B,△AOB的面積為2.若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過反比例函數(shù) 的圖象上另一點(diǎn)C(n,一2).
(1)求直線y=ax+b的解析式;
(2)設(shè)直線y=ax+b與x軸交于點(diǎn)M,求AM的長.
【答案】
(1)
解:∵點(diǎn)A(﹣1,m)在第二象限內(nèi),
∴AB=m,OB=1,
∴S△ABO= ABBO=2,
即: ×m×1=2,
解得m=4,
∴A (﹣1,4),
∵點(diǎn)A (﹣1,4),在反比例函數(shù) 的圖象上,
∴4= ,
解得k=﹣4,
∴反比例函數(shù)為y=﹣ ,
又∵反比例函數(shù)y=﹣ 的圖象經(jīng)過C(n,﹣2)
∴﹣2= ,
解得n=2,
∴C (2,﹣2),
∵直線y=ax+b過點(diǎn)A (﹣1,4),C (2,﹣2)
∴ ,
解方程組得 ,
∴直線y=ax+b的解析式為y=﹣2x+2
(2)
解:當(dāng)y=0時(shí),即﹣2x+2=0,
解得x=1,
∴點(diǎn)M的坐標(biāo)是M(1,0),
在Rt△ABM中,
∵AB=4,BM=BO+OM=1+1=2,
由勾股定理得AM= = =
【解析】(1)根據(jù)點(diǎn)A的橫坐標(biāo)與△AOB的面積求出AB的長度,從而得到點(diǎn)A的坐標(biāo),然后利用待定系數(shù)法求出反比例函數(shù)解析式,再利用反比例函數(shù)解析式求出點(diǎn)C的坐標(biāo),根據(jù)點(diǎn)A與點(diǎn)C的坐標(biāo)利用待定系數(shù)法即可求出直線y=ax+b的解析式;(2)根據(jù)直線y=ax+b的解析式,取y=0,求出對應(yīng)的x的值,得到點(diǎn)M的坐標(biāo),然后求出BM的長度,在△ABM中利用勾股定理即可求出AM的長度.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解一次函數(shù)的性質(zhì)(一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時(shí),y隨x的增大而增大(2)當(dāng)k<0時(shí),y隨x的增大而減小),還要掌握一次函數(shù)的圖象和性質(zhì)(一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn))的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,建立平面直角坐標(biāo)系.
(1)以原點(diǎn)O為對稱中心,畫出與△ABC關(guān)于原點(diǎn)O對稱的△A1B1C1 , A1的坐標(biāo)是
(2)將原來的△ABC繞著點(diǎn)(﹣2,1)順時(shí)針旋轉(zhuǎn)90°得到△A2B2C2 , 試在圖上畫出△A2B2C2的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,﹣1).
①以原點(diǎn)O為對稱中心,畫出△ABC關(guān)于原點(diǎn)O對稱的△A1B1C1;
②將△ABC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到△AB2C2 , 畫出△AB2C2 , 并求出AC掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,長方形MNPO的邊OM在x軸上,邊OP在y軸上,點(diǎn)N的坐標(biāo)為(3,9),將矩形沿對角線PM翻折,N點(diǎn)落在F點(diǎn)的位置,且FM交y軸于點(diǎn)E,那么點(diǎn)F的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對稱軸為直線x=1.下列結(jié)論:
①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
④ <a<
⑤b>c.
其中含所有正確結(jié)論的選項(xiàng)是( )
A.①③
B.①③④
C.②④⑤
D.①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=BC=2,D為BC的中點(diǎn),在AC邊上存在一點(diǎn)E,連結(jié)ED,EB,則△BDE周長的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的角平分線上的一點(diǎn),,,是的中點(diǎn),點(diǎn)是上的一個動點(diǎn),若的最小值為,則的長度為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com