【題目】已知拋物線G:有最低點(diǎn)。
(1)求二次函數(shù)的最小值(用含m的式子表示);
(2)將拋物線G向右平移m個單位得到拋物線G1。經(jīng)過探究發(fā)現(xiàn),隨著m的變化,拋物線G1頂點(diǎn)的縱坐標(biāo)y與橫坐標(biāo)x之間存在一個函數(shù)關(guān)系,求這個函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)記(2)所求的函數(shù)為H,拋物線G與函數(shù)H的圖像交于點(diǎn)P,結(jié)合圖像,求點(diǎn)P的縱坐標(biāo)的取值范圍.
【答案】(1)二次函數(shù)的最小值是;(2);(3)-4-3.
【解析】
(1)拋物線有最低點(diǎn)即開口向上,m>0,用配方法或公式法求得對稱軸和函數(shù)最小值.
(2)寫出拋物線G的頂點(diǎn)式,根據(jù)平移規(guī)律即得到拋物線G1的頂點(diǎn)式,進(jìn)而得到拋物線G1頂點(diǎn)坐標(biāo)(m+1,-m-3),即x=m+1,y=-m-3,x+y=-2即消去m,得到y與x的函數(shù)關(guān)系式.再由m>0,即求得x的取值范圍.
(3)求出拋物線恒過點(diǎn)B(2,-4),函數(shù)H圖象恒過點(diǎn)A(2,-3),由圖象可知兩圖象交點(diǎn)P應(yīng)在點(diǎn)A、B之間,即點(diǎn)P縱坐標(biāo)在A、B縱坐標(biāo)之間.
解:(1)∵y=mx2-2mx-3=m(x-1)2-m-3,拋物線有最低點(diǎn),
∴二次函數(shù)y=mx2-2mx-3的最小值為-m-3.
(2)∵拋物線G:y=m(x-1)2-m-3,
∴平移后的拋物線G1:y=m(x-1-m)2-m-3,
∴拋物線G1頂點(diǎn)坐標(biāo)為(m+1,-m-3),
∴x=m+1,y=-m-3,
∴x+y=m+1-m-3=-2.
即x+y=-2,變形得y=-x-2.
∵m>0,m=x-1.
∴x-1>0,
∴x>1,
∴y與x的函數(shù)關(guān)系式為y=-x-2(x>1).
(3)如圖,函數(shù)H:y=-x-2(x>1)圖象為射線,
x=1時,y=-1-2=-3;x=2時,y=-2-2=-4,
∴函數(shù)H的圖象恒過點(diǎn)B(2,-4),
∵拋物線G:y=m(x-1)2-m-3,
x=1時,y=-m-3;x=2時,y=m-m-3=-3.
∴拋物線G恒過點(diǎn)A(2,-3),
由圖象可知,若拋物線與函數(shù)H的圖象有交點(diǎn)P,則yB<yP<yA,
∴點(diǎn)P縱坐標(biāo)的取值范圍為-4<yP<-3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,BC為⊙O切線,連接A、C兩點(diǎn),交⊙O于點(diǎn)D,BE=CE,連接DE,OE.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)求證:BC2=CD2OE;
(3)若cos∠BAD=,BE=6,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片,,,點(diǎn)在邊上,將沿折疊,點(diǎn)落在點(diǎn)處,、分別交于點(diǎn)、,且,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,點(diǎn)D是邊BC上一點(diǎn).作射線AD,點(diǎn)B關(guān)于射線AD的對稱點(diǎn)為點(diǎn)E.連接CE并延長,交射線AD于點(diǎn)F.
(1)如圖①,連接AE,
①AE與AC的數(shù)量關(guān)系是 ;
②設(shè)∠BAF=a,用a表示∠BCF的大;
(2)如圖②,用等式表示線段AF,CF,EF之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖平面直角坐標(biāo)系,已知二次函數(shù)(m>0)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為點(diǎn)D.
(1)點(diǎn)B的坐標(biāo)為 ,點(diǎn)D的坐標(biāo)為 ;(用含有m的代數(shù)式表示)
(2)連接CD,BC.
①若,求二次函數(shù)的表達(dá)式;
②若把ABC沿著直線BC翻折,點(diǎn)A恰好在直線CD上,求二次函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃投資萬元引進(jìn)一條汽車配件流水生產(chǎn)線,經(jīng)過調(diào)研知道該流水生產(chǎn)線的年產(chǎn)量為件,每件總成本為萬元,每件出廠價萬元;流水生產(chǎn)線投產(chǎn)后,從第年到第年的維修、保養(yǎng)費(fèi)用累計(萬元)如下表:
第年 | ··· | ||||||
維修、保養(yǎng)費(fèi)用累計萬元 | ··· |
若上表中第年的維修、保養(yǎng)費(fèi)用累計(萬元)與的數(shù)量關(guān)系符合我們已經(jīng)學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)中某一個.
(1)求出關(guān)于的函數(shù)解析式;
(2)投產(chǎn)第幾年該公司可收回萬元的投資?
(3)投產(chǎn)多少年后,該流水線要報廢(規(guī)定當(dāng)年的盈利不大于維修、保養(yǎng)費(fèi)用累計即報費(fèi))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形 ABCD 中,過點(diǎn) D 作 DE⊥AB 于點(diǎn) E,點(diǎn) F 在 CD 上,CF =AE,連接 BF,AF.
(1)求證:四邊形 BFDE 是矩形;
(2)若 AF 平分∠BAD,交DE與H點(diǎn),且 AB=3AE,BF=6,求AH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)A1的坐標(biāo)為(1,2),以O為圓心,OA1長為半徑畫弧,交直線y=x于點(diǎn)B1.過點(diǎn)B1作B1A2∥y軸交直線y=2x于點(diǎn)A2,以O為圓心,OA2長為半徑畫弧,交直線y═x于點(diǎn)B2;過點(diǎn)B2作B2A3∥y軸交直線y=2x于點(diǎn)A3,以點(diǎn)O為圓心,OA3長為半徑畫弧,交直線y=x于點(diǎn)B3;……按如此規(guī)律進(jìn)行下去,點(diǎn)B2020的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)以致用:問題1:怎樣用長為的鐵絲圍成一個面積最大的矩形?
小學(xué)時我們就知道結(jié)論:圍成正方形時面積最大,即圍成邊長為的正方形時面積最大為.請用你所學(xué)的二次函數(shù)的知識解釋原因.
思考驗(yàn)證:問題2:怎樣用鐵絲圍一個面積為且周長最小的矩形?
小明猜測:圍成正方形時周長最小.
為了說明其中的道理,小明翻閱書籍,找到下面的結(jié)論:
在、均為正實(shí)數(shù))中,若為定值,則,只有當(dāng)時,有最小值.
思考驗(yàn)證:證明:、均為正實(shí)數(shù))
請完成小明的證明過程:
證明:對于任意正實(shí)數(shù)、
解決問題:
(1)若,則 (當(dāng)且僅當(dāng) 時取“” ;
(2)運(yùn)用上述結(jié)論證明小明對問題2的猜測;
(3)填空:當(dāng)時,的最小值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com