【題目】如圖平面直角坐標(biāo)系,已知二次函數(shù)m0)的圖象與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,頂點為點D

1)點B的坐標(biāo)為   ,點D的坐標(biāo)為   ;(用含有m的代數(shù)式表示)

2)連接CDBC

①若,求二次函數(shù)的表達(dá)式;

②若把ABC沿著直線BC翻折,點A恰好在直線CD上,求二次函數(shù)的表達(dá)式.

【答案】1;(2)①;②

【解析】

1)令 解方程求出的值,結(jié)合點B的位置可得答案,由頂點的橫坐標(biāo)公式求得頂點橫坐標(biāo),再代入解析式求解縱坐標(biāo)即可.

2)①過點DDHAB,過點CCGDH,得到AB//CG,利用平行線的性質(zhì),銳角三角函數(shù)得從而可求解函數(shù)解析式,

②過點BBMAC,BNCD,由翻折得到角平分線,利用角平分線的性質(zhì)得,利用三角形面積關(guān)系得到,利用兩點間距離公式列方程求解即可.

解:(1)令

A在點B的左側(cè),

,

拋物線的頂點橫坐標(biāo)為

頂點縱坐標(biāo)為:

頂點

故答案為:

2)①過點DDHAB,過點CCGDH,

由題可知,C0,﹣3m2),A(﹣m,0),B3m,0),

,,

AB//CG

,

,

,

,

②過點BBMACBNCD,

∵翻折

BMACBNCD,

C0,﹣3m2),A(﹣m,0),B3m,0),D

,

,

,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=ax+b與反比例函數(shù),其中ab0a、b為常數(shù),它們在同一坐標(biāo)系中的圖象可以是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,對角線AC,BD交于點OE是邊AD上的一個動點(與點A,D不重合),連接EO并延長,交BC于點F,連接BE,DF.下列說法:

對于任意的點E,四邊形BEDF都是平行四邊形;

當(dāng)∠ABC>90°時,至少存在一個點E,使得四邊形BEDF是矩形;

當(dāng)AB<AD時,至少存在一個點E,使得是四邊形BEDF是菱形;

當(dāng)∠ADB=45°時,至少存在一個點E,使得是四邊形BEDF是正方形.

所有正確說法的序號是:_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形臺球桌面ABCD上有兩個球PQPQAB,球P連續(xù)撞擊臺球桌邊AB,BC反射后,撞到球Q.已知點M,N是球在ABBC邊的撞擊點,PQ=4,∠MPQ=30,且點PAB邊的距離為3,則四邊形PMNQ的周長為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點Cy軸正半軸上的一個動點,拋物線yax26ax+5aa是常數(shù),且a0)過點C,與x軸交于點AB,點A在點B的左邊.連接AC,以AC為邊作等邊三角形ACD,點D與點O在直線AC兩側(cè),連接BD,則BD的最小值是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線G有最低點。

1)求二次函數(shù)的最小值(用含m的式子表示);

2)將拋物線G向右平移m個單位得到拋物線G1。經(jīng)過探究發(fā)現(xiàn),隨著m的變化,拋物線G1頂點的縱坐標(biāo)y與橫坐標(biāo)x之間存在一個函數(shù)關(guān)系,求這個函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

3)記(2)所求的函數(shù)為H,拋物線G與函數(shù)H的圖像交于點P,結(jié)合圖像,求點P的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子中裝有個小球,它們除了顏色不同外,其余都相同, 其中有 5 個白球,每次試驗前,將盒子中的小球搖勻,隨機摸出一個球記下顏色后再放回盒中.下表是摸球試驗的一組統(tǒng)計數(shù)據(jù):

摸球次數(shù)( n

50

100

150

200

250

300

500

摸到白球次( m

28

60

78

104

123

152

251

白球頻率(

0.56

0.60

0.52

0.52

0.49

0.51

0.50

由上表可以推算出a大約是(

A.10B.14C.16D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某街道需要鋪設(shè)管線的總長為9000,計劃由甲隊施工,每天完成150.工作一段時間后,因為天氣原因,想要40天完工,所以增加了乙隊.如圖表示剩余管線的長度與甲隊工作時間(天)之間的函數(shù)關(guān)系圖象.

1)直接寫出點的坐標(biāo);

2)求線段所對應(yīng)的函數(shù)解析式,并寫出自變量的取值范圍;

3)直接寫出乙隊工作25天后剩余管線的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩所醫(yī)院分別有一男一女共4名醫(yī)護(hù)人員支援湖北武漢抗擊疫情.

(1)若從甲、乙兩醫(yī)院支援的醫(yī)護(hù)人員中分別隨機選1名,則所選的2名醫(yī)護(hù)人員性別相同的概率是    

(2)若從支援的4名醫(yī)護(hù)人員中隨機選2名,用列表或畫樹狀圖的方法求出這2名醫(yī)護(hù)人員來自同一所醫(yī)院的概率.

查看答案和解析>>

同步練習(xí)冊答案