【題目】如圖,已知OTRtABO斜邊AB上的高線,AO=BO.以O為圓心,OT為半徑的圓交OA于點C,過點C作⊙O的切線CD,交AB于點D.則下列結論中錯誤的是(  )

A.DC=DTB.AD=DTC.BD=BOD.2OC=5AC

【答案】D

【解析】

根據(jù)切線的判定知DT是⊙O的切線,根據(jù)切線長定理可判斷選項A正確;可證得ADC是等腰直角三角形,可計算判斷選項B正確;根據(jù)切線的性質得到CD=CT,根據(jù)全等三角形的性質得到∠DOC=TOC,根據(jù)三角形的外角的性質可判斷選項C正確;

解:如圖,連接OD

OT是半徑,OTAB,

DT是⊙O的切線,

DC是⊙O的切線,

DC=DT,故選項A正確;

OA=OB,∠AOB=90°,

∴∠A=∠B=45°

DC是切線,

CDOC

∴∠ACD=90°,

∴∠A=∠ADC=45°,

AC=CD=DT,

AD=CD=DT,故選項B正確;

OD=OD,OC=OT,DC=DT,

∴△DOC≌△DOTSSS),

∴∠DOC=∠DOT

OA=OB,OTAB,∠AOB=90°,

∴∠AOT=∠BOT=45°,

∴∠DOT=∠DOC=22.5°,

∴∠BOD=∠ODB=67.5°,

BO=BD,故選項C正確;

OA=OB,∠AOB=90°,OTAB,

設⊙O的半徑為2

OT=OC=AT=BT=2,

OA=OB=2,

,

2OC5AC故選項D錯誤;

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABC內接于⊙O,且AB為⊙O的直徑,作的平分線交圓周于點D,連結AD、BD,AB、CD交于點E

1)求證:ABD為等腰直角三角形;

2)填空:

①若,則AE的長度為_______;

②在①的條件下,延長ACDB交于點P,則______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是一垂直于水平面的建筑物,某同學從建筑物底端B出發(fā),先沿水平方向向右行走20米到達點C,再經過一段坡度(或坡比)為i10.75、坡長為10米的斜坡CD到達點D,然后再沿水平方向向右行走40米到達點EA,B,C,D,E均在同一平面內),在E處處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為__米.(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91tan24°≈0.45

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】構建幾何圖形解決代數(shù)問題是“數(shù)形結合”思想的重要性,在計算tan15°時,如圖.在RtACB中,∠C90°,∠ABC30°,延長CB使BDAB,連接AD,得∠D15°,所以tan15°.類比這種方法,計算tan22.5°的值為(  )

A.B.1C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為倡導健康環(huán)保,自帶水杯已成為一種好習慣,某超市銷售甲,乙兩種型號水杯,進價和售價均保持不變,其中甲種型號水杯進價為25/個,乙種型號水杯進價為45/個,下表是前兩月兩種型號水杯的銷售情況:

時間

銷售數(shù)量(個)

銷售收入(元)(銷售收入=售價×銷售數(shù)量)

甲種型號

乙種型號

第一月

22

8

1100

第二月

38

24

2460

1)求甲、乙兩種型號水杯的售價;

2)第三月超市計劃再購進甲、乙兩種型號水杯共80個,這批水杯進貨的預算成本不超過2600元,且甲種型號水杯最多購進55個,在80個水杯全部售完的情況下設購進甲種號水杯a個,利潤為w元,寫出wa的函數(shù)關系式,并求出第三月的最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)承接了27000件產品的生產任務,計劃安排甲、乙兩個車間的共50名工人,合作生產20天完成.已知甲、乙兩個車間利用現(xiàn)有設備,工人的工作效率為:甲車間每人每天生產25件,乙車間每人每天生產30件.

1)求甲、乙兩個車間各有多少名工人參與生產?

2)為了提前完成生產任務,該企業(yè)設計了兩種方案:

方案一 甲車間租用先進生產設備,工人的工作效率可提高20%,乙車間維持不變.

方案二 乙車間再臨時招聘若干名工人(工作效率與原工人相同),甲車間維持不變.

設計的這兩種方案,企業(yè)完成生產任務的時間相同.

①求乙車間需臨時招聘的工人數(shù);

②若甲車間租用設備的租金每天900元,租用期間另需一次性支付運輸?shù)荣M用1500元;乙車間需支付臨時招聘的工人每人每天200元.問:從新增加的費用考慮,應選擇哪種方案能更節(jié)省開支?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小吳家準備購買一臺電視機,小吳將收集到的某地區(qū)A、B、C三種品牌電視機銷售情況的有關數(shù)據(jù)統(tǒng)計如下:

根據(jù)上述三個統(tǒng)計圖,請解答:

120142019年三種品牌電視機銷售總量最多的是   品牌,月平均銷售量最穩(wěn)定的是   品牌.

22019年其他品牌的電視機年銷售總量是多少萬臺?

3)貨比三家后,你建議小吳家購買哪種品牌的電視機?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某小區(qū)A棟樓在B棟樓的南側,兩樓高度均為90m,樓間距為MN.春分日正午,太陽光線與水平面所成的角為55.7°,A棟樓在B棟樓墻面上的影高為DM;冬至日正午,太陽光線與水平面所成的角為30°,A棟樓在B棟樓墻面上的影高為CM.已知CD44.5m

(1)求樓間距MN;

(2)B號樓共30層,每層高均為3m,則點C位于第幾層?(參考數(shù)據(jù):tan30°≈0.58sin55.7°≈0.83,cos55.7°≈0.56tan55.7°≈1.47)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形是矩形,以點為圓心、為半徑畫弧交于點.若恰好為的中點.

1_______;

2平分嗎?證明你的結論.

查看答案和解析>>

同步練習冊答案