【題目】如圖,四邊形是矩形,以點為圓心、為半徑畫弧交于點.于.若恰好為的中點.
(1)_______;
(2)平分嗎?證明你的結(jié)論.
【答案】(1);(2)平分,證明詳見解析
【解析】
(1)由已知和矩形的性質(zhì)可得AE=AD=BC=2BE,∠B=90,再由直角三角形的性質(zhì)即可解答;
(2)由∠BAE=30、∠BAD=90和可求出∠EDA=30,再由直角三角形的性質(zhì)即可證明.
(1)∵四邊形是矩形,
∴∠B=∠BAD=90,AD=BC,
∵以點為圓心、為半徑畫弧交于點,
∴AE=AD
∴AE=BC,
∵恰好為的中點,
∴BE=BC=AE,
∵∠B=90,
∴∠BAE=30,
故答案為:30;
(2)DF平分AE,理由為:
由(1)知∠BAD=90,∠BAE=30,AD=AE,
∴∠DAF=90-∠BAE=90-30=60,
∵,
∴∠ADF=30,
∴AF=AD,
∵AD=AE,
∴AF=AE,
∴DF平分AE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OT是Rt△ABO斜邊AB上的高線,AO=BO.以O為圓心,OT為半徑的圓交OA于點C,過點C作⊙O的切線CD,交AB于點D.則下列結(jié)論中錯誤的是( 。
A.DC=DTB.AD=DTC.BD=BOD.2OC=5AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:AB為⊙O的直徑,C、D為心⊙O上的點,C是優(yōu)弧AD的中點,CE⊥DB交DB的延長線于點E.
(1)如圖1,判斷直線CE與⊙O的位置關(guān)系,并說明理由.
(2)如圖2,若tan∠BCE=,連BC、CD,求cos∠BCD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織了一次比賽,甲、乙兩隊各有5人參加比賽,兩隊每人的比賽成績(單位:分)如下:
甲隊:7,8,9,6,10
乙隊:10,9,5,8,8
(1)甲隊成績的中位數(shù)是 分,乙隊成績的眾數(shù)是 分;
(2)計算乙隊的平均成績和方差;
(3)已知甲隊成績的方差為S2甲=2,則成績波動較大的是 隊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織學(xué)生書法比賽,對參賽作品按A、B、C、D四個等級進行了評定.現(xiàn)隨機取部分學(xué)生書法作品的評定結(jié)果進行分析,并繪制扇形統(tǒng)計圖和條形統(tǒng)計圖如下:
根據(jù)上述信息完成下列問題:
(1)求這次抽取的樣本的容量;
(2)請在圖②中把條形統(tǒng)計圖補充完整;
(3)已知該校這次活動共收到參賽作品750份,請你估計參賽作品達到B級以上(即A級和B級)有多少份?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+6的圖像開口向下,與x軸交于點A(-6,0)和點B(2,0),與y軸交于點C,點P是該函數(shù)圖像上的一個動點(不與點C重合)
(1) 求二次函數(shù)的關(guān)系式;
(2)如圖1當(dāng)點P是該函數(shù)圖像上一個動點且在線段的上方,若△PCA的面積為12,求點P的坐標(biāo);
(3)如圖2,該函數(shù)圖像的頂點為D,在該函數(shù)圖像上是否存在點E,使得∠EAB=2∠DAC,若存在請直接寫出點E的坐標(biāo);若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年非洲豬瘟疫情暴發(fā)后,今年豬肉價格不斷走高,引起了民眾與政府的高度關(guān)注,據(jù)統(tǒng)計:今年7月20日豬肉價格比今年年初上漲了60%,某市民今年7月20日在某超市購買1千克豬肉花了80元錢.
(1)問:今年年初豬肉的價格為每千克多少元?
(2)某超市將進貨價為每千克65元的豬肉,按7月20日價格出售,平均一天能銷售出100千克,經(jīng)調(diào)查表明:豬肉的售價每千克下降1元,其日銷售量就增加10千克,超市為了實現(xiàn)銷售豬內(nèi)每天有1560元的利潤,并且可能讓顧客得到實惠,豬肉的售價應(yīng)該下降多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①是釣魚傘,為遮擋不同方向的陽光,釣魚傘可以在撐桿AN上的點O處彎折并旋轉(zhuǎn)任意角,圖②是釣魚傘直立時的示意圖,當(dāng)傘完全撐開時,傘骨AB,AC與水平方向的夾角∠ABC=∠ACB=30°,傘骨AB與AC水平方向的最大距離BC=2m,BC與AN交于點M,撐桿AN=2.2m,固定點O到地面的距離ON=1.6m.
(1)如圖②,當(dāng)傘完全撐開并直立時,求點B到地面的距離.
(2)某日某時,為了增加遮擋斜射陽光的面積,將釣魚傘傾斜與鉛垂線HN成30°夾角,如圖③.
①求此時點B到地面的距離;
②若斜射陽光與BC所在直線垂直時,求BC在水平地面上投影的長度約是多少.(說明:≈1.732,結(jié)果精確到0.1m)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com