【題目】已知二次函數(shù)y=ax2+bx+6的圖像開(kāi)口向下,與x軸交于點(diǎn)A(-6,0)和點(diǎn)B(2,0),與y軸交于點(diǎn)C,點(diǎn)P是該函數(shù)圖像上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合)
(1) 求二次函數(shù)的關(guān)系式;
(2)如圖1當(dāng)點(diǎn)P是該函數(shù)圖像上一個(gè)動(dòng)點(diǎn)且在線段的上方,若△PCA的面積為12,求點(diǎn)P的坐標(biāo);
(3)如圖2,該函數(shù)圖像的頂點(diǎn)為D,在該函數(shù)圖像上是否存在點(diǎn)E,使得∠EAB=2∠DAC,若存在請(qǐng)直接寫(xiě)出點(diǎn)E的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.
【答案】(1) ;(2)(﹣2,8)或(﹣4,6);(3) 或.
【解析】
(1)由題意設(shè)函數(shù)的表達(dá)式為:結(jié)合已知函數(shù)解析式即可求解;
(2)由點(diǎn)P在線段的上方,設(shè)連接 ,從而可得答案;
(3)證明為直角三角形,延長(zhǎng)DC至D′使CD=CD′,連接AD′,過(guò)點(diǎn)D作DH⊥AD′,計(jì)算sin∠DAC ,sin2∠DAC=sin∠DAD′得到sin∠EAB,tan∠EAB ,利用一次函數(shù)的性質(zhì)得一次函數(shù)是解析式,聯(lián)立解析式解方程組即可求解.
解:(1) 拋物線與x軸交于點(diǎn)A(-6,0)和點(diǎn)B(2,0),
設(shè)函數(shù)的表達(dá)式為:
二次函數(shù)
解得:
函數(shù)的表達(dá)式為:.
(2)如圖1所示,在的上方,
連接
設(shè)
把代入,
解得:
所以點(diǎn)P坐標(biāo)為或
(3) 拋物線為:,為頂點(diǎn),
則
延長(zhǎng)DC至D′使CD=CD′,連接AD′,
過(guò)點(diǎn)D作DH⊥AD′, 則
即:
解得:
∠EAB=2∠DAC,
①當(dāng)點(diǎn)E在AB上方時(shí), 則直線AE的表達(dá)式為:,
將點(diǎn)坐標(biāo)代入上式:
直線AE的表達(dá)式為:
解得: 或 (舍去)
即點(diǎn)
②當(dāng)點(diǎn)E在AB下方時(shí),
設(shè)直線為:
將點(diǎn)坐標(biāo)代入上式:
直線為:
解得: 或 (舍去)
綜上,點(diǎn)或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)承接了27000件產(chǎn)品的生產(chǎn)任務(wù),計(jì)劃安排甲、乙兩個(gè)車(chē)間的共50名工人,合作生產(chǎn)20天完成.已知甲、乙兩個(gè)車(chē)間利用現(xiàn)有設(shè)備,工人的工作效率為:甲車(chē)間每人每天生產(chǎn)25件,乙車(chē)間每人每天生產(chǎn)30件.
(1)求甲、乙兩個(gè)車(chē)間各有多少名工人參與生產(chǎn)?
(2)為了提前完成生產(chǎn)任務(wù),該企業(yè)設(shè)計(jì)了兩種方案:
方案一 甲車(chē)間租用先進(jìn)生產(chǎn)設(shè)備,工人的工作效率可提高20%,乙車(chē)間維持不變.
方案二 乙車(chē)間再臨時(shí)招聘若干名工人(工作效率與原工人相同),甲車(chē)間維持不變.
設(shè)計(jì)的這兩種方案,企業(yè)完成生產(chǎn)任務(wù)的時(shí)間相同.
①求乙車(chē)間需臨時(shí)招聘的工人數(shù);
②若甲車(chē)間租用設(shè)備的租金每天900元,租用期間另需一次性支付運(yùn)輸?shù)荣M(fèi)用1500元;乙車(chē)間需支付臨時(shí)招聘的工人每人每天200元.問(wèn):從新增加的費(fèi)用考慮,應(yīng)選擇哪種方案能更節(jié)省開(kāi)支?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x經(jīng)過(guò)點(diǎn)A,作AB⊥x軸于點(diǎn)B,將△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到△CBD,若點(diǎn)B的坐標(biāo)為(2,0),則點(diǎn)C的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形AOBC的邊AO在x軸的負(fù)半軸上,邊OB在y軸的負(fù)半軸上.且AO=12,OB=9.拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A和點(diǎn)B.
(1)求拋物線的表達(dá)式;
(2)在第二象限的拋物線上找一點(diǎn)M,連接AM,BM,AB,當(dāng)△ABM面積最大時(shí),求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D是線段AO上的動(dòng)點(diǎn),點(diǎn)E是線段BO上的動(dòng)點(diǎn),點(diǎn)F是射線AC上的動(dòng)點(diǎn),連接EF,DF,DE,BD,且EF是線段BD的垂直平分線.當(dāng)CF=1時(shí).
①直接寫(xiě)出點(diǎn)D的坐標(biāo) ;
②若△DEF的面積為30,當(dāng)拋物線y=﹣x2+bx+c經(jīng)過(guò)平移同時(shí)過(guò)點(diǎn)D和點(diǎn)E時(shí),請(qǐng)直接寫(xiě)出此時(shí)的拋物線的表達(dá)式 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是矩形,以點(diǎn)為圓心、為半徑畫(huà)弧交于點(diǎn).于.若恰好為的中點(diǎn).
(1)_______;
(2)平分嗎?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 在矩形紙片中, , 點(diǎn),分別是,的中點(diǎn), 點(diǎn),分別在,上, 且.將沿折疊, 點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),將沿折疊, 點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),當(dāng)四邊形為菱形時(shí), 則_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,=3,=5,是上一點(diǎn),連結(jié),將沿翻折,使點(diǎn)的對(duì)應(yīng)點(diǎn)落在邊上,則△的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為的網(wǎng)格中,點(diǎn),點(diǎn)均落在格點(diǎn)上,為⊙的直徑.
(1)的長(zhǎng)等于__________;
(2)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫(huà)出一個(gè)以為斜邊、面積為的,并簡(jiǎn)要說(shuō)明點(diǎn)的位置是如何找到的(不要求證明)__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角板是我們學(xué)習(xí)數(shù)學(xué)的好幫手.將一對(duì)直角三角板如圖放置,點(diǎn)C在FD的延長(zhǎng)線上,點(diǎn)B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,則CD的長(zhǎng)度是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com