【題目】如圖,在△ABC中,AC邊的垂直平分線DM交AC于D,BC邊的垂直平分線EN交BC于E,DM與EN相交于點F.
(1)若△CMN的周長為20cm,求AB的長;
(2)若∠MFN=70°,求∠MCN的度數(shù).
【答案】(1)20cm;(2)40°
【解析】
(1)根據(jù)垂直平分線的性質(zhì)可求的AB的長等于△CMN得周長;
(2)根據(jù)垂直的性質(zhì)可知∠CDF=∠CEF=90°,然后根據(jù)四邊形的內(nèi)角和求得∠ACB=110°,再根據(jù)三角形的內(nèi)角和求得∠A+∠B=70°,最后根據(jù)垂等腰三角形的性質(zhì)可求得結(jié)論.
解:(1)∵DM垂直平分AC,
∴AM=CM,
∵EN垂直平分BC,∴BN=CN,
∴C△CMN=CM+CN+MN= AM+BN+MN=AB=20cm.
(2)∵DM⊥AC,EN⊥BC,
∴∠CDF=∠CEF=90°,
∵∠MFN=70°,
∴∠ACB=110°,
∴∠A+∠B=70°,
∵AM=CM,BN=CN,
∴∠A=∠ACM,∠B=∠BCN,
∴∠ACM +∠BCN =70°,
∴∠MCN=110°-70°=40°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B是⊙O上兩點,若四邊形ACBO是菱形,⊙O的半徑為r,則點A與點B之間的距離為( )
A. r B. r C. r D. 2r
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若四邊形ABCD∽四邊形A′B′C′D′,AB=6,A′B′=8,∠A=45°,B′C′=8,CD=4,則下列說法錯誤的是( )
A. ∠A′=45°
B. 四邊形A′B′C′D′與四邊形ABCD的相似比為
C. BC=6
D. C′D′=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖.在不等邊△ABC中,PM⊥AB,垂足為M,PN⊥AC,垂足為N,且PM=PN,Q在AC上,PQ=QA,下列結(jié)論.①AN=AM,②QP∥AM,③△BMP≌△QNP,其中正確的是( )
A.①②③B.①②C.②③D.①
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市中小學全面開展“陽光體育”活動,某校在大課間中開設(shè)了A:體操,B:跑操,C:舞蹈,D:健美操四項活動,為了解學生最喜歡哪一項活動,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)這次被調(diào)查的學生共有 人.
(2)請將統(tǒng)計圖2補充完整.
(3)統(tǒng)計圖1中B項目對應(yīng)的扇形的圓心角是 度.
(4)已知該校共有學生3600人,請根據(jù)調(diào)查結(jié)果估計該校喜歡健美操的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知□ABCD,延長AB到E使BE=AB,連接BD,ED,EC,若ED=AD.
(1)求證:四邊形BECD是矩形;
(2)連接AC,若AD=4,CD= 2,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為的正方形組成的網(wǎng)格中,的頂點均在格點上,點、的坐標分別是,,關(guān)于軸對稱的圖形為.
畫出并寫出點的坐標為________;
寫出的面積為________;
點在軸上,使的值最小,寫出點的坐標為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請在括號內(nèi)填寫理由.
如圖所示,已知∠1=∠2,∠B=∠C,可證明AB∥CD,理由如下:
∵∠1=∠2(已知),且∠1=∠4(對頂角相等)
∴∠2=∠4(等量代換)
∴______∥_______(_______)
∴∠______=∠3(________),又∵∠B=∠C(已知),
∴∠3=∠B(等量代換)
∴AB∥CD(__________)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在四邊形ABCD中,∠F為四邊形ABCD的∠ABC的平分線及外角∠DCE的平分線所在的直線構(gòu)成的銳角,若∠A=α,∠D=β,
(1)如圖①,當α+β>180°時,∠F=____(用含α,β的式子表示);
(2)如圖②,當α+β<180°時,請在圖②中,畫出∠F,且∠F=___(用含α,β的式子表示);
(3)當α,β滿足條件___時,不存在∠F.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com