【題目】我們規(guī)定:平面內(nèi)點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最小值稱為該點(diǎn)到這個(gè)圖形的最小距離d,點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最大值稱為該點(diǎn)到這個(gè)圖形的最大距離D,定義點(diǎn)A到圖形G的距離跨度為R=D﹣d.
(1)①如圖1,在平面直角坐標(biāo)系xOy中,圖形G1為以O(shè)為圓心,2為半徑的圓,直接寫(xiě)出以下各點(diǎn)到圖形G1的距離跨度:
A(﹣1,0)的距離跨度;
B( ,﹣ )的距離跨度;
C(﹣3,2)的距離跨度;
②根據(jù)①中的結(jié)果,猜想到圖形G1的距離跨度為2的所有的點(diǎn)組成的圖形的形狀是 .
(2)如圖2,在平面直角坐標(biāo)系xOy中,圖形G2為以C(1,0)為圓心,2為半徑的圓,直線y=k(x+1)上存在到G2的距離跨度為2的點(diǎn),求k的取值范圍.
(3)如圖3,在平面直角坐標(biāo)系xOy中,射線OA:y= x(x≥0),圓C是以3為半徑的圓,且圓心C在x軸上運(yùn)動(dòng),若射線OA上存在點(diǎn)到圓C的距離跨度為2,直接寫(xiě)出圓心C的橫坐標(biāo)xc的取值范圍.
【答案】
(1)1;3;2;圓
(2)解:設(shè)直線y=k(x+1)上存在到G2的距離跨度為2的點(diǎn)P(m,k(m+1)),
∴OP= ,
由(1)②知,圓內(nèi)一點(diǎn)到圖形圓的跨度是此點(diǎn)到圓心距離的2倍,圓外一點(diǎn)到圖形圓的跨度是此圓的直徑,
∵圖形G2為以C(1,0)為圓心,2為半徑的圓,到G2的距離跨度為2的點(diǎn),
∴距離跨度小于圖形G2的圓的直徑4,
∴點(diǎn)P在圖形G2⊙C內(nèi)部,
∴R=2OP=2 ,
∵直線y=k(x+1)上存在到G2的距離跨度為2的點(diǎn)P,
∴2 =2,
∴(k2+1)m2+2(k2﹣1)m+k2=0①,
∵存在點(diǎn)P,
∴方程①有實(shí)數(shù)根,
∴△=4(k2﹣1)2﹣4×(k2+1)k2=﹣9k2+4≥0,
∴﹣
(3)解:同(2)的方法得出,射線OA上存在點(diǎn)P到圓C的距離跨度為2時(shí),點(diǎn)P在圓內(nèi),
設(shè)點(diǎn)P(n, n),(n>0),
∵圓心C(x2,0),∴PC= = ×2=1,
∴ n2﹣2x2n+x22﹣1=0,
∴射線OA上存在點(diǎn)到圓C的距離跨度為2,
∴ ,
∴1≤x2≤2
【解析】解:(1)如圖1,
①∵圖形G1為以O(shè)為圓心,2為半徑的圓,∴直徑為4,
∵A(﹣1,0),OA=1,
∴點(diǎn)A到⊙O的最小距離d=MA=OM﹣OA=1,
點(diǎn)A到⊙O的最大距離D=AN=ON+OM=2+1=3,
∴點(diǎn)A到圖形G1的距離跨度R=D﹣d=3﹣1=2;
∵B( ,﹣ ),∴OB= =1,
∴點(diǎn)B到⊙O的最小距離d=BG=OG﹣OB=1,
點(diǎn)B到⊙O的最大距離D=BF=FO+OB=2+1=3,
∴點(diǎn)B到圖形G1的距離跨度R=D﹣d=3﹣1=2;
∵C(﹣3,2),
∴OC= = ,
∴點(diǎn)C到⊙O的最小距離d=CD=OC﹣OD= ﹣2,
點(diǎn)C到⊙O的最大距離D=CE=OC+OE=2+
∴點(diǎn)C到圖形G1的距離跨度R=D﹣d=2+ ﹣( ﹣2)=4;
∴圓,
理由:①設(shè)⊙O內(nèi)一點(diǎn)P的坐標(biāo)為(x,y),
∴OP= ,
∴點(diǎn)P到⊙O的最小距離d=2﹣OP,點(diǎn)P到⊙O的最大距離D=2+OP,
∴點(diǎn)P到圖形G1的距離跨度R=D﹣d=2+OP﹣(2﹣OP)=2OP;
∵圖形G1的距離跨度為2,
∴2OP=2,
∴OP=1,
∴ =1,
∴x2+y2=1,
即:到圖形G1的距離跨度為2的所有的點(diǎn)組成的圖形的形狀是以點(diǎn)O為圓心,1為半徑的圓.
②設(shè)⊙O外一點(diǎn)Q的坐標(biāo)為(x,y),
∴OQ= ,
∴點(diǎn)Q到⊙O的最小距離d=OQ﹣2,點(diǎn)P到⊙O的最大距離D=OQ+2,
∴點(diǎn)P到圖形G1的距離跨度R=D﹣d=OQ+2﹣(OQ﹣2)=4;
∵圖形G1的距離跨度為2,
∴此種情況不存在,
所以,到圖形G1的距離跨度為2的所有的點(diǎn)組成的圖形的形狀是以點(diǎn)O為圓心,1為半徑的圓.
故答案為:圓;
(1)①先根據(jù)跨度的定義先確定出點(diǎn)到圓的最小距離d和最大距離D,即可得出跨度;②分點(diǎn)在圓內(nèi)和圓外兩種情況同①的方法計(jì)算,判定得出結(jié)論;(2)先判斷出存在的點(diǎn)P必在圓O內(nèi),設(shè)出點(diǎn)P的坐標(biāo),利用點(diǎn)P到圓心O的距離的2倍是點(diǎn)P到圓的距離跨度,建立方程,由于存在距離跨度是2的點(diǎn),此方程有解即可得出k的范圍.(3)同(2)方法判斷出存在的點(diǎn)P在圓C內(nèi)部,由于在射線OA上存在距離跨度是2的點(diǎn),同(2)的方法建立方程,用一元二次方程根與系數(shù)的關(guān)系和根的判別式即可確定出范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的是一個(gè)長(zhǎng),寬,高的長(zhǎng)方體,現(xiàn)在把它等分為個(gè)棱長(zhǎng)為的小正方體
說(shuō)明你的分法;
把這個(gè)小正方體排成一排組成一個(gè)新長(zhǎng)方體,這個(gè)新長(zhǎng)方體與原長(zhǎng)方體相比.表面積怎樣變化?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對(duì)應(yīng)的數(shù)為﹣20,B點(diǎn)對(duì)應(yīng)的數(shù)為100.
(1)請(qǐng)寫(xiě)出與A,B兩點(diǎn)距離相等的點(diǎn)M所對(duì)應(yīng)的數(shù) .
(2)現(xiàn)有一只電子螞蟻P從B點(diǎn)出發(fā),以6單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度向右運(yùn)動(dòng),x秒后兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,請(qǐng)列方程求出x,并指出點(diǎn)C表示的數(shù).
(3)若當(dāng)電子螞蟻P從B點(diǎn)出發(fā)時(shí),以6單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度也向左運(yùn)動(dòng),y秒后兩只電子螞蟻在數(shù)軸上的D點(diǎn)相遇,請(qǐng)列方程求出y并指出點(diǎn)D表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校剛完成一批結(jié)構(gòu)相同的學(xué)生宿舍的修建,這些宿舍地板需要鋪瓷磚,一天4名一級(jí)技工去鋪4個(gè)宿舍,結(jié)果還剩12 m2地面未鋪瓷磚;同樣時(shí)間內(nèi)6名二級(jí)技工鋪4個(gè)宿舍剛好完成,已知每名一級(jí)技工比二級(jí)技工一天多鋪3 m2瓷磚.
(1)求每個(gè)宿舍需要鋪瓷磚的地板面積.
(2)現(xiàn)該學(xué)校有20個(gè)宿舍的地板和36 m2的走廊需要鋪瓷磚,某工程隊(duì)有4名一級(jí)技工和6名二級(jí)技工,一開(kāi)始有4名一級(jí)技工來(lái)鋪瓷磚,3天后,學(xué)校根據(jù)實(shí)際情況要求2天后必須完成剩余的任務(wù),所以決定加入一批二級(jí)技工一起工作,問(wèn)需要再安排多少名二級(jí)技工才能按時(shí)完成任務(wù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P為邊BC上一動(dòng)點(diǎn),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn),則AM的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖,點(diǎn)(1,0)在函數(shù)圖象上,那么abc、2a+b、a+b+c、a﹣b+c這四個(gè)代數(shù)式中,值大于或等于零的數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是由些棱長(zhǎng)的正方體小木塊搭建成的幾何體的主視圖、俯視圖和左視圖,①請(qǐng)你觀察它是由多少塊小木塊組成的;②在俯視圖中標(biāo)出相應(yīng)位置立方體的個(gè)數(shù);③求出該幾何體的表面積(包含底面).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C、D、E三點(diǎn)在同一直線上,連接BD.
(1)求證:△BAD≌△CAE;
(2)試猜想BD、CE有何特殊位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形OABC在平面直角坐標(biāo)系中如圖,已知AB=10,BC=8,EB是C上一點(diǎn),將△ABE沿AE折疊,點(diǎn)B剛好與OC邊上點(diǎn)D重合,過(guò)點(diǎn)E的反比例函數(shù)y=(k>0)與AB相交于點(diǎn)F,則線段AF的長(zhǎng)為( 。
A. B. C. 2 D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com