【題目】下面是由些棱長的正方體小木塊搭建成的幾何體的主視圖、俯視圖和左視圖,請你觀察它是由多少塊小木塊組成的;在俯視圖中標出相應位置立方體的個數(shù);求出該幾何體的表面積(包含底面).

【答案】①共有個正方體小木塊組成;②詳見解析;③

【解析】

①由俯視圖可得該組合幾何體最底層的小木塊的個數(shù),由主視圖和左視圖可得第二層和第三層小木塊的個數(shù),相加即可;
②根據上題得到的正方體的個數(shù)在俯視圖上標出來即可;
③將幾何體的暴露面(包括底面)的面積相加即可得到其表面積.

解:①∵俯視圖中有個正方形,

最底層有個正方體小木塊,

由主視圖和左視圖可得第二層有個正方體小木塊,第三層有個正方體小木塊,

共有個正方體小木塊組成.

根據得:

表面積為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有四張背面相同的紙牌A,B,C,D,其正面分別是紅桃、方塊、黑桃、梅花,其中紅桃、方塊為紅色,黑桃、梅花為黑色.小明將這4張紙牌背面朝上洗勻后,摸出一張,將剩余3張洗勻后再摸出一張.請用畫樹狀圖或列表的方法求摸出的兩張牌均為黑色的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果方程x2+px+q=0的兩個根是x1、x2,那么x1+x2=-p,x1x2=q,請根據以上結論,解決下列問題:

(1)已知x1、x2是方程x2+4x-2=0的兩個實數(shù)根,求+的值;

(2)已知方程x2+bx+c=0的兩根分別為+1、-1,求出bc的值;

(3)關于x的方程x2+(m-1)x+m2-3=0的兩個實數(shù)根互為倒數(shù),求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定:平面內點A到圖形G上各個點的距離的最小值稱為該點到這個圖形的最小距離d,點A到圖形G上各個點的距離的最大值稱為該點到這個圖形的最大距離D,定義點A到圖形G的距離跨度為R=D﹣d.
(1)①如圖1,在平面直角坐標系xOy中,圖形G1為以O為圓心,2為半徑的圓,直接寫出以下各點到圖形G1的距離跨度:
A(﹣1,0)的距離跨度;
B( ,﹣ )的距離跨度;
C(﹣3,2)的距離跨度;
②根據①中的結果,猜想到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是

(2)如圖2,在平面直角坐標系xOy中,圖形G2為以C(1,0)為圓心,2為半徑的圓,直線y=k(x+1)上存在到G2的距離跨度為2的點,求k的取值范圍.

(3)如圖3,在平面直角坐標系xOy中,射線OA:y= x(x≥0),圓C是以3為半徑的圓,且圓心C在x軸上運動,若射線OA上存在點到圓C的距離跨度為2,直接寫出圓心C的橫坐標xc的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面內已知,、分別是的平分線,則的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,點E在對角線AC上,EC=BC=DC.
(1)若∠CBD=39°,求∠BAD的度數(shù);
(2)求證:∠1=∠2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分別為E,F(xiàn).

(1)求證:ABE≌△CDF;

(2)若AC與BD交于點O,求證:AO=CO.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=8cm,對角線AC,BD相交于點O,點E,F(xiàn)分別從B,C兩點同時出發(fā),以1cm/s的速度沿BC,CD運動,到點C,D時停止運動,設運動時間為t(s),△OEF的面積為s(cm2),則s(cm2)與t(s)的函數(shù)關系可用圖象表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,四邊形ABCD是正方形,∠MAN=45°,它的兩邊AM、AN分別交CB、DC與點M、N,連結MN,作AHMN,垂足為點H

(1)如圖1,猜想AHAB有什么數(shù)量關系?并證明;

(2)如圖2,已知∠BAC=45°,ADBC于點D,且BD=2,CD=3,求AD的長;

小萍同學通過觀察圖①發(fā)現(xiàn),ABMAHM關于AM對稱,AHNADN關于AN對稱,于是她巧妙運用這個發(fā)現(xiàn),將圖形如圖③進行翻折變換,解答了此題.你能根據小萍同學的思路解決這個問題嗎?

查看答案和解析>>

同步練習冊答案