【題目】已知拋物線y=(x-m)2-(x-m),其中m是常數(shù).

1)求證:不論m為何值,該拋物線與x軸一定有兩個公共點.

2)若該拋物線的對稱軸為直線,求該拋物線的函數(shù)表達式.

【答案】1)證明見解析;(2y=x2-5x+6

【解析】

1)先把拋物線解析式化為一般式,再計算△的值,得到△=10,于是根據(jù)△=b24ac決定拋物線與x軸的交點個數(shù)即可判斷不論m為何值,該拋物線與x軸一定有兩個公共點;
2)根據(jù)對稱軸方程得到,然后解出m的值即可得到拋物線解析式;

解:(1)證明:y=(x-m)2-(x-m)=x2-(2m+1)x+m2+m,

,

∴不論m為何值,該拋物線與x軸一定有兩個公共點.

2)∵y=x2-(2m+1)x+m2+m,

對稱軸為直線

,解得m=2

∴拋物線的函數(shù)表達式為y=x2-5x+6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】桑桑同學利用寒假30天的時間販賣草莓,某品種草莓的成本為10/千克,該品種草莓在第天的銷售量與銷售單價如下表:

銷售量(千克)

銷售單價(元/千克)

時,

時,

1)請計算第幾天該品種草莓的銷售單價為25/千克?

2)這30天中,該同學第幾天獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系內,ABx軸上兩點,以AB為直徑的⊙My軸于CD兩點,C的中點,弦AEy軸于點F,且點A的坐標為(2,0),CD8

1)求⊙M的半徑;

2)動點P在⊙M的圓周上運動.①如圖1,當EP平分∠AEB時,求PN×EP的值;②如圖2,過點D作⊙M的切線交x軸于點Q,當點P與點A,B不重合時,是否為定值?若是,請求出其值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(3,0),說法:①abc0;②2ab0;③﹣a+c0;④若(5,y1)、(,y2)是拋物線上兩點,則y1y2,其中說法正確的有(  )個.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠BCA90°,∠A<∠ABCDAC邊上一點,且DADBOAB的中點,CE是△BCD的中線.

(1)如圖a,連接OC,請直接寫出∠OCE和∠OAC的數(shù)量關系:   ;

(2)M是射線EC上的一個動點,將射線OM繞點O逆時針旋轉得射線ON,使∠MON=∠ADB,ON與射線CA交于點N

①如圖b,猜想并證明線段OM和線段ON之間的數(shù)量關系;

②若∠BAC30°,BCm,當∠AON15°時,請直接寫出線段ME的長度(用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將拋物線M1yax2+4x向右平移3個單位,再向上平移3個單位,得到拋物線M2,直線yxM1的一個交點記為A,與M2的一個交點記為B,點A的橫坐標是﹣3

1)求a的值及M2的表達式;

2)點C是線段AB上的一個動點,過點Cx軸的垂線,垂足為D,在CD的右側作正方形CDEF

當點C的橫坐標為2時,直線yx+n恰好經過正方形CDEF的頂點F,求此時n的值;

在點C的運動過程中,若直線yx+n與正方形CDEF始終沒有公共點,求n的取值范圍(直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為備戰(zhàn)奧運會,中國女排的姑娘們刻苦訓練,為國爭光,如圖,已知排球場的長度 OD 18 米,位于球場中線處球網的高度 AB 2.43 米,一隊員站在點 O 處發(fā)球,排球從點 O 的正上方 1.8 米的 C 點向正前方飛出,當排球運行至離點 O 的水平距離 OE 7 米時,到達最高點 G,建立如圖所示的平面直角坐標系.

1)當球上升的最大高度為 3.2 米時,求排球飛行的高度 y(單位:米)與水平距離 x(單位:米)的函數(shù)關系式.(不要求寫出自變量 x 的取值范圍)

2)在(1)的條件下,對方距球網 0.5 米的點 F 處有一隊員,她起跳后的最大高度為 3.1米,問這次她是否可以攔網成功?請通過計算說明.(不考慮排球的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

某同學遇到這樣一個問題:在平面直角坐標系中,已知直線在拋物線上,求點到直線的距離

如圖1,他過點于點軸分別交軸于點交直線于點.他發(fā)現(xiàn),可求出的長,再利用求出的長,即為點到直線的距離

     

請回答:

(1)圖1中, ,點到直線的距離

參考該同學思考問題的方法,解決下列問題:

在平面直角坐標系中,點是拋物線上的一動點,設點到直線的距離為

(2)如圖2,

,則點的坐標為 ;

,在點運動的過程中,求的最小值;

(3)如圖3,,在點運動的過程中,的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著低碳生活,綠色出行理念的普及,新能源汽車正逐漸成為人們喜愛的交通工具.某汽車銷售公司計劃購進一批新能源汽車嘗試進行銷售,據(jù)了解2A型汽車、3B型汽氣車的進價共計80萬元;3A型汽車、2B型汽車的進價共計95萬元。

(1)A、B兩種型號的汽車每輛進價分別為多少方元?

(2)若該公司計劃正好用200萬元購進以上兩種型號的新能源汽車(兩種型號的汽車均購買),請你幫助該公司設計購買方案;

(3)若該汽車銷售公司銷售1A型汽車可獲利8000,銷售1B型汽車可獲利5000,(2)中的購買方案中,假如這些新能源汽車全部售出,哪種方案獲利最大?最大利潤是多少元?

查看答案和解析>>

同步練習冊答案