【題目】如圖,拋物線(xiàn)y=x2+mx+n與直線(xiàn)y=﹣x+3交于A,B兩點(diǎn),交x軸與D,C兩點(diǎn),連接ACBC,已知A(0,3),C(3,0).

(1)求拋物線(xiàn)的關(guān)系式和tanBAC的值;

(2)P為拋物線(xiàn)上一動(dòng)點(diǎn),連接PA,過(guò)點(diǎn)PPQOAy軸于點(diǎn)Q,問(wèn):是否存在點(diǎn)P使得以A,PQ為頂點(diǎn)的三角形與ACB相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)在AB上找一點(diǎn)M,使得OM+DM的值最小,直接寫(xiě)出點(diǎn)M的坐標(biāo).

【答案】(1)拋物線(xiàn)解析式:y=x2x+3;tan∠BAC=(2)點(diǎn)P坐標(biāo)為:(11,36),(,),(﹣1,6),();(3)M點(diǎn)坐標(biāo)(,).

【解析】

(1)C兩點(diǎn)坐標(biāo)代入二次函數(shù)的解析式,解方程組求出m、n的值即可得拋物線(xiàn)的解析式,利用解析式可求出D點(diǎn)坐標(biāo),根據(jù)拋物線(xiàn)和直線(xiàn)交于A、B兩點(diǎn),解方程組可求得B點(diǎn)坐標(biāo),根據(jù)A、B、C三點(diǎn)坐標(biāo)可知△ABC是直角三角形,進(jìn)而可求得tanBAC 的值.(2)設(shè)P(a,a2a+3),根據(jù)QA=ACB=90°可知相似比為3,分別討論點(diǎn)P在點(diǎn)A的下方和下方兩種情況,根據(jù)相似比求出a的值即可的P點(diǎn)坐標(biāo);(3)由A、B兩點(diǎn)坐標(biāo)求出直線(xiàn)AB的解析式,作點(diǎn)O關(guān)于直線(xiàn)AB的對(duì)稱(chēng)點(diǎn)O',可求出O′的坐標(biāo)當(dāng)O',M,D三點(diǎn)共線(xiàn)時(shí),OM+DM值最小,連接O'DABM,根據(jù)D、O′坐標(biāo)可求出O'D的析式,結(jié)合AB的解析式求出M的坐標(biāo)即可.

1)∵拋物線(xiàn)y=x2+mx+n過(guò)點(diǎn)A(0,3),點(diǎn)C(3,0).

解得:n=3,m=﹣

∴拋物線(xiàn)解析式:y=x2x+3

當(dāng)y=0時(shí),0=x2x+3

x1=3,x2=2

D點(diǎn)坐標(biāo)(2,0)

∵拋物線(xiàn)y=x2+mx+n與直線(xiàn)y=﹣x+3交于A,B兩點(diǎn)

,

解得: ;

B點(diǎn)坐標(biāo)(4,1)

A(0,3),C(3,0),B(4,1)

AB=2,BC=,AC=3,

AB2=20,BC2=2,AC2=18

AB2=BC2+AC2

∴∠ACB=90°

tanBAC==

(2)設(shè)P(a,a2a+3),

若點(diǎn)P在點(diǎn)A的下方,則PQ=a>0

∵以A,P,Q為頂點(diǎn)的三角形與△ACB相似,且∠PQA=ACB=90°

,

,則3AQ=PQ 3[3﹣(a2a+3)]=a

解得a=,a=0(不合題意舍去)

∴點(diǎn)P(,

,則AQ=3PQ [3﹣(a2a+3)]=3a

解得:a=0(不合題意舍去),a=﹣1(不合題意舍去)

若點(diǎn)P在點(diǎn)A上方,且在y軸左側(cè),則PQ=﹣a>0

∵以A,P,Q為頂點(diǎn)的三角形與△ACB相似,且∠PQA=ACB=90°

,則3AQ=PQ,即3[(a2a+3)﹣3]=﹣a

解得:a=0(不合題意舍去),a=(不合題意舍去)

,則AQ=3PQ [(a2a+3)﹣3]=﹣3a

解得:a=0(不合題意舍去),a=﹣1

∴點(diǎn)P(﹣1,6)

若點(diǎn)P在點(diǎn)A上方,且在y軸右側(cè),則PQ=a>0

∵以A,P,Q為頂點(diǎn)的三角形與△ACB相似,且∠PQA=ACB=90°

,則3AQ=PQ,即3[(a2a+3)﹣3]=a

解得:a=0(不合題意舍去),a=,

∴點(diǎn)P(,

,則AQ=3PQ [(a2a+3)﹣3]=3a

解得:a=0(不合題意舍去),a=11,

∴點(diǎn)P(11,36)

綜上所述:點(diǎn)P坐標(biāo)為:(11,36),(),(﹣1,6),(

(3)A(0,3),B(4,1)

∴直線(xiàn)AB的解析式:y=﹣x+3

作點(diǎn)O關(guān)于直線(xiàn)AB的對(duì)稱(chēng)點(diǎn)O'(/span>,

OM+DM=O'M+DM

根據(jù)兩點(diǎn)之間,線(xiàn)段最短,則當(dāng)O',M,D三點(diǎn)共線(xiàn)時(shí),OM+DM值最。

連接O'DABM

O'(),D(2,0)

O'D解析式:y=12x﹣24

解得:

M點(diǎn)坐標(biāo)( ,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于、兩點(diǎn),與軸交于點(diǎn),其頂點(diǎn)為,連接、、,過(guò)點(diǎn)軸的垂線(xiàn)

(1)求點(diǎn),的坐標(biāo);

(2)直線(xiàn)上是否存在點(diǎn),使的面積等于的面積的倍?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAD=130°,∠B=D=90°,在BC,CD上分別找一點(diǎn)MN,使三角形AMN周長(zhǎng)最小時(shí),則∠MAN的度數(shù)為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商店只有雪碧、可樂(lè)、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學(xué)去該店購(gòu)買(mǎi)飲料,每種飲料被選中的可能性相同.

1)若他去買(mǎi)一瓶飲料,則他買(mǎi)到奶汁的概率是

2)若他兩次去買(mǎi)飲料,每次買(mǎi)一瓶,且兩次所買(mǎi)飲料品種不同,請(qǐng)用樹(shù)狀圖或列表法求出他恰好買(mǎi)到雪碧和奶汁的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)yx+mynx5nn≠0)的交點(diǎn)的橫坐標(biāo)為3,則關(guān)于x的不等式x+mnx5n0的整數(shù)解為(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店銷(xiāo)售10臺(tái)A型和20臺(tái)B型電腦的利潤(rùn)為4000元,銷(xiāo)售20臺(tái)A型和10臺(tái)B型電腦的利潤(rùn)為3500元.

(1)求每臺(tái)A型電腦和B型電腦的銷(xiāo)售利潤(rùn);

(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過(guò)A型電腦的2倍,設(shè)購(gòu)進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷(xiāo)售總利潤(rùn)為y元.

求y關(guān)于x的函數(shù)關(guān)系式;

該商店購(gòu)進(jìn)A型、B型電腦各多少臺(tái),才能使銷(xiāo)售總利潤(rùn)最大?

(3)實(shí)際進(jìn)貨時(shí),廠(chǎng)家對(duì)A型電腦出廠(chǎng)價(jià)下調(diào)m(0<m<100)元,且限定商店最多購(gòu)進(jìn)A型電腦70臺(tái),若商店保持同種電腦的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺(tái)電腦銷(xiāo)售總利潤(rùn)最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線(xiàn)y=k1x+bx軸、y軸相交于C、D兩點(diǎn),與y=交于A(m,2)、B(﹣2,n)兩點(diǎn).

(1)求m+n的值;

(2)連接OA、OB,若tanAOD+tanBOC=1.

①當(dāng)不等式k1x+b>時(shí),請(qǐng)結(jié)合圖象求x的取值范圍;

②設(shè)點(diǎn)Ey軸上,且滿(mǎn)足∠AEO+AOD=45°,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐

問(wèn)題情境

在綜合與實(shí)踐課上,老師組織同學(xué)們以“直角三角形的旋轉(zhuǎn)”為主題開(kāi)展數(shù)學(xué)活動(dòng).如圖1,矩形ABCD中,AD=2AB,連接AC,將ABC繞點(diǎn)A旋轉(zhuǎn)到某一位置,觀(guān)察圖形,提出問(wèn)題并加以解決.

實(shí)踐操作

(1)如圖2,慎思組的同學(xué)將圖1中的ABC以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn),得到A'B'C',此時(shí)B'C過(guò)點(diǎn)D,則∠ADB=  度.

(2)博學(xué)組的同學(xué)在圖2的基礎(chǔ)上繼續(xù)旋轉(zhuǎn)到圖3,此時(shí)點(diǎn)C'落在CD的延長(zhǎng)線(xiàn)上,連接BB',該組提出下面兩個(gè)問(wèn)題:

C'D和AB有何數(shù)量關(guān)系?并說(shuō)明理由.

BB'和AC′有何位置關(guān)系?并說(shuō)明理由.

請(qǐng)你解決該組提出的這兩個(gè)問(wèn)題.

提出問(wèn)題

(3)請(qǐng)你參照以上操作,將圖1中的ABC旋轉(zhuǎn)至某一位置,在圖4中畫(huà)出新圖形,表明字母,說(shuō)明構(gòu)圖方法,并提出一個(gè)問(wèn)題,不必解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A=65,∠B=75,將紙片一角折疊,使點(diǎn)C落在ABC外,若∠2=20,則∠1的度數(shù)為 _______.

查看答案和解析>>

同步練習(xí)冊(cè)答案