如圖,等腰直角三角形ABC的斜邊AB所在的直線(xiàn)上有E,F(xiàn)兩點(diǎn),且∠E+∠F=45°,AE=3,設(shè)AB=x,BF=y,則y與x的函數(shù)關(guān)系式為_(kāi)_____.
∵△ABC為等腰直角三角形,
∴AC=BC.
∴∠CAB=∠CBA=45°,
∴∠EAC=∠CBF,∠E+∠ECA=45°.
∵∠E+∠F=45°,
∴∠F=∠ECA,
∴△ACE△BFC,
AC
BF
=
AE
BC

∵等腰直角三角形ABC的斜邊AB=x,
∴AC=BC=
2
2
x,
解得:y=
1
6
x2
故應(yīng)填:y=
1
6
x2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知拋物線(xiàn)y=-
1
2
x2+bx+c(b,c為常數(shù))的頂點(diǎn)為P,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,-1),C的坐標(biāo)為(4,3),直角頂點(diǎn)B在第四象限.
(1)如圖,若該拋物線(xiàn)過(guò)A,B兩點(diǎn),求該拋物線(xiàn)的函數(shù)表達(dá)式;
(2)平移(1)中的拋物線(xiàn),使頂點(diǎn)P在直線(xiàn)AC上滑動(dòng),且與AC交于另一點(diǎn)Q.
(i)若點(diǎn)M在直線(xiàn)AC下方,且為平移前(1)中的拋物線(xiàn)上的點(diǎn),當(dāng)以M、P、Q三點(diǎn)為頂點(diǎn)的三角形是等腰直角三角形時(shí),求出所有符合條件的點(diǎn)M的坐標(biāo);
(ii)取BC的中點(diǎn)N,連接NP,BQ.試探究
PQ
NP+BQ
是否存在最大值?若存在,求出該最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)的圖象如圖所示,根據(jù)圖中的數(shù)據(jù),
(1)求二次函數(shù)的解析式;
(2)設(shè)此二次函數(shù)的頂點(diǎn)為P,求△ABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:直線(xiàn)y=2x+6與x軸和y軸分別交于A(yíng)、C兩點(diǎn),拋物線(xiàn)y=-x2+bx+c經(jīng)過(guò)點(diǎn)A、C,點(diǎn)B是拋物線(xiàn)與x軸的另一個(gè)交點(diǎn).
(1)求拋物線(xiàn)的解析式及B的坐標(biāo);
(2)設(shè)點(diǎn)P是直線(xiàn)AC上一點(diǎn),且S△ABP:S△BPC=1:3,求點(diǎn)P的坐標(biāo);
(3)直線(xiàn)y=
1
2
x+a與(1)中所求的拋物線(xiàn)交于M、N兩點(diǎn),問(wèn):是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線(xiàn)y=mx2+(m-3)x-3(m>0)與x軸交于A(yíng)、B兩點(diǎn),且點(diǎn)A在點(diǎn)B的左側(cè),與y軸交于點(diǎn)C,OB=OC.
(1)求這條拋物線(xiàn)的解析式;
(2)若點(diǎn)P(x1,b)與點(diǎn)Q(x2,b)在(1)中的拋物線(xiàn)上,且x1<x2,PQ=n.
①求4x12-2x2n+6n+3的值;
②將拋物線(xiàn)在PQ下方的部分沿PQ翻折,拋物線(xiàn)的其它部分保持不變,得到一個(gè)新圖象.當(dāng)這個(gè)新圖象與x軸恰好只有兩個(gè)公共點(diǎn)時(shí),b的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),直線(xiàn)y=kx+b與x軸交于點(diǎn)A(3,0),與y軸的正半軸交于點(diǎn)B,tan∠OAB=
3

(1)求這直線(xiàn)的解析式;
(2)將△OAB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°后,點(diǎn)B落到點(diǎn)C的位置,求以點(diǎn)C為頂點(diǎn)且經(jīng)過(guò)點(diǎn)A的拋物線(xiàn)的解析式;
(3)設(shè)(2)中的拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)為點(diǎn)D,與y軸的交點(diǎn)為E.試判斷△ODE是否與△OAB相似?如果認(rèn)為相似,請(qǐng)加以證明;如果認(rèn)為不相似,也請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角梯形ABCD中,∠C=90°,高CD=6cm(如圖1).動(dòng)點(diǎn)P,Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P沿BA,AD,DC運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q沿BC運(yùn)動(dòng)到C點(diǎn)停止.兩點(diǎn)運(yùn)動(dòng)時(shí)的速度都是1cm/s.而當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),點(diǎn)Q正好到達(dá)點(diǎn)C.設(shè)P,Q同時(shí)從點(diǎn)B出發(fā),經(jīng)過(guò)的時(shí)間為t(s)時(shí),△BPQ的面積為y(cm2)(如圖2).分別以x,y為橫、縱坐標(biāo)建立直角坐標(biāo)系,已知點(diǎn)P在A(yíng)D邊上從A到D運(yùn)動(dòng)時(shí),y與t的函數(shù)圖象是圖3中的線(xiàn)段MN.
(1)分別求出梯形中BA,AD的長(zhǎng)度;
(2)寫(xiě)出圖3中M,N兩點(diǎn)的坐標(biāo);
(3)分別寫(xiě)出點(diǎn)P在BA邊上和DC邊上運(yùn)動(dòng)時(shí),y與t的函數(shù)關(guān)系式(注明自變量的取值范圍),并在答題卷的圖4(放大了的圖3)中補(bǔ)全整個(gè)運(yùn)動(dòng)中y關(guān)于t的函數(shù)關(guān)系的大致圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)在足球比賽中,當(dāng)守門(mén)員遠(yuǎn)離球門(mén)時(shí),進(jìn)攻隊(duì)員常常使用“吊射”的戰(zhàn)術(shù)(把球高高地挑過(guò)守門(mén)員的頭頂,射入球門(mén)).一位球員在離對(duì)方球門(mén)30米的M處起腳吊射,假如球飛行的路線(xiàn)是一條拋物線(xiàn),在離球門(mén)14米時(shí),足球到達(dá)最大高度
32
3
米,如圖1,以球門(mén)底部為坐標(biāo)原點(diǎn)建立坐標(biāo)系,球門(mén)PQ的高度為2.44米,試通過(guò)計(jì)算說(shuō)明,球是否會(huì)進(jìn)入球門(mén)?
(2)在(1)中,若守門(mén)員站在距球門(mén)2米遠(yuǎn)處,而守門(mén)員跳起后最多能摸到2.75米高處,他能否在空中截住這次吊射?
(3)如圖2,在另一次地面進(jìn)攻中,假如守門(mén)員站在離球門(mén)中央2米遠(yuǎn)的A處防守,進(jìn)攻隊(duì)員在離球門(mén)中央12米的B處,以120千米/小時(shí)的球速起腳射門(mén),射向球門(mén)的立柱C,球門(mén)的寬度CD為7.2米,而守門(mén)員防守的最遠(yuǎn)水平距離S(米)與時(shí)間t(秒)之間的函數(shù)關(guān)系式為S=10t,問(wèn)守門(mén)員能否擋住這次射門(mén)?
(4)在(3)的條件下,∠EAG區(qū)域?yàn)槭亻T(mén)員的截球區(qū)域,試估計(jì)∠EAG的最大值(精確到0.1°).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某小區(qū)有一長(zhǎng)100m,寬80m的空地,現(xiàn)將其建成花園廣場(chǎng),設(shè)計(jì)圖案如下,陰影區(qū)域?yàn)榫G化區(qū)(四塊綠化區(qū)是全等矩形),空白區(qū)域?yàn)榛顒?dòng)區(qū),且四周出口一樣寬,寬度不小于50m,不大于60m.預(yù)計(jì)活動(dòng)區(qū)每平方米造價(jià)60元,綠化區(qū)每平方米造價(jià)50元.設(shè)每塊綠化區(qū)的長(zhǎng)邊為xm,短邊為ym,工程總造價(jià)為w元.
(1)寫(xiě)出x的取值范圍;
(2)寫(xiě)出y與x的函數(shù)關(guān)系式;
(3)寫(xiě)出w與x的函數(shù)關(guān)系式;
(4)如果小區(qū)投資46.9萬(wàn)元,問(wèn)能否完成工程任務(wù)?若能,請(qǐng)寫(xiě)出x為整數(shù)的所有工程方案;若不能,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):
3
≈1.732)

查看答案和解析>>

同步練習(xí)冊(cè)答案