已知:直線y=2x+6與x軸和y軸分別交于A、C兩點,拋物線y=-x2+bx+c經(jīng)過點A、C,點B是拋物線與x軸的另一個交點.
(1)求拋物線的解析式及B的坐標(biāo);
(2)設(shè)點P是直線AC上一點,且S△ABP:S△BPC=1:3,求點P的坐標(biāo);
(3)直線y=
1
2
x+a與(1)中所求的拋物線交于M、N兩點,問:是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請說明理由.
(1)當(dāng)x=0時,y=6,
∴C(0,6),
當(dāng)y=0時,x=-3,
∴A(-3,0),
∵拋物線y=-x2+bx+c經(jīng)過點A、C,
-9-3b+c=0
c=6
,
解得:
b=-1
c=6

∴拋物線的解析式為y=-x2-x+6,
當(dāng)y=0時,整理得x2+x-6=0,
解得:x1=2,x2=-3,
∴點B(2,0).

(2)過點B作BD⊥AC,D為垂足,
∵S△ABP:S△BPC=1:3,
1
2
AP•BD
1
2
PC•BD
=
1
3
,
∴AP:PC=1:3
由勾股定理,得AC=
AO2+CO2
=3
5

當(dāng)點P為線段AC上一點時,過點P作PH⊥x軸,點H為垂足,
PH
OC
=
AP
AC
=
1
4

∴PH=
3
2
,
3
2
=2x+6,
∴x=-
9
4
,
∴點P(-
9
4
,
3
2

當(dāng)點P在CA延長線時,作PG⊥x軸,點G為垂足
∵AP:PC=1:3
∴AP:AC=1:2,
PG
OC
=
AP
AC
=
1
2
,
∴PG=3,
∴-3=2x+6
x=-
9
2
,
∴點P(-
9
2
,-3).

(3)存在a的值,使得∠MON=90°,
設(shè)直線y=
1
2
x+a與拋物線y=-x2-x+6的交點為M(xM,yM),N(xN,yN)(M在N左側(cè))
x1=xM
y1=yN
x2=xN
y2=yN

為方程組
y=
1
2
x+a
y=-x2-x+6
的解
分別過點M、N作MM’⊥x軸,NN′⊥x軸,點M、N為垂足.
∴M′(xM,0),N′(xN,0),
∴OM′=-xMON′=xN
∵∠MON=90°,
∴∠MOM′+∠NON′=90°,
∵∠M′MO+∠MOM′=90°,
∴∠M’MO=∠NON’
∴Rt△MM′ORt△ON′N,
MM′
ON′
=
OM′
NN′

∴MM′•NN′=ON′•OM′,
∴-xM•xN=yM•yN
由方程組消去y整理,得:x2+
3
2
x+a-6=0.
∴xM、xN是方程x2+
3
2
x+a-6=0的兩個根,
由根與系數(shù)關(guān)系得,xM+xN=-
3
2
,xM•xN=a-6
又∵yM•yN=(
1
2
xM+a)(
1
2
xN+a)=
1
4
xM•xN+
a
2
(xM+xN)+a2=
1
4
(a-6)-
3
4
a+a2
∴-(a-6)=
1
4
(a-6)-
3
4
a+a2
整理,得2a2+a-15=0
解得a1=-3,a2=
5
2

∴存在a值,使得∠MON=90°,其值為a=-3或a=
5
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

求過(-1,0),(3,0),(1,-5)三點的拋物線的解析式,并畫出該拋物線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)的頂點坐標(biāo)為(2,0),直線y=x+2與該二次函數(shù)的圖象交于A,B兩點,其中A點在y軸上,
(I)求此二次函數(shù)的解析式.
(II)P為線段AB上一點(A,B兩端點除外),過P點作x軸的垂線PC與(I)中的二此函數(shù)的圖象交于Q點,設(shè)線段PQ的長為m,P點的橫坐標(biāo)為x,求出函數(shù)m與自變量x之間的函數(shù)關(guān)系式,并求出自變量x的取值范圍.
(III)線段AB上是否存在一點,使(II)中的線段PQ的長等于5?若存在,求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,小李推鉛球,如果鉛球運行時離地面的高度y(米)關(guān)于水平距離x(米)的函數(shù)解析式y=-
1
8
x2+
1
2
x+
3
2
,那么鉛球運動過程中最高點離地面的距離為______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

松花江大橋的一個橋拱為拋物線形狀,拱頂A離橋面50m,橋面上拱形鋼梁之間的距離BC=120m,建立如圖所示的直角坐標(biāo)系.
(1)寫出A,B,C三點的坐標(biāo);
(2)求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

手工課上,小明準(zhǔn)備做一個形狀是菱形的風(fēng)箏,這個菱形的兩條對角線長度之和恰好為60cm,菱形的面積S(單位:cm2)隨其中一條對角線的長x(單位:cm)的變化而變化.
(1)請直接寫出S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(2)當(dāng)x是多少時,菱形風(fēng)箏面積S最大?最大面積是多少?
(參考公式:當(dāng)x=-
b
2a
時,二次函數(shù)y=ax2+bx+c(a0)有最小(大)值
4ac-b2
4a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,等腰直角三角形ABC的斜邊AB所在的直線上有E,F(xiàn)兩點,且∠E+∠F=45°,AE=3,設(shè)AB=x,BF=y,則y與x的函數(shù)關(guān)系式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,四邊形ABCD是等腰梯形,其中ADBC,AD=2,BC=4,AB=DC=2,點M從點B開始,以每秒1個單位的速度向點C運動;點N從點D開始,沿D→A→B方向,以每秒1個單位的速度向點B運動.若點M、N同時開始運動,其中一點到達(dá)終點,另一點也停止運動,運動時間為t(t>0).過點N作NP⊥BC與P,交BD于點Q.
(1)點D到BC的距離為______;
(2)求出t為何值時,QMAB;
(3)設(shè)△BMQ的面積為S,求S與t的函數(shù)關(guān)系式;
(4)求出t為何值時,△BMQ為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(5,0)、C(0,5)三點.
(1)求拋物線的函數(shù)關(guān)系式;
(2)若過點C的直線y=kx+b與拋物線相交于點E(4,m),請求出△CBE的面積S的值;
(3)寫出二次函數(shù)值大于一次函數(shù)值的x的取值范圍;
(4)在拋物線上是否存在點P使得△ABP為等腰三角形?若存在,請指出一共有幾個滿足條件的點P,并求出其中一個點的坐標(biāo);若不存在這樣的點P,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案