【題目】如圖,直線AB//CD,直線EF交AB于點E,交CD于點F,EP平分∠AEF,FP平分∠CFE,∠BEP=α,∠DFP=β,則a+β=( )
A.180°B.225°C.270°D.315°
【答案】C
【解析】
根據平行線的性質,由AB∥CD得到∠AEF+∠CFE=180°,再根據角平分線定義得∠PEF+∠PFE=(∠AEF+∠CFE),然后計算出∠EPF=90°,再由∠BEP+∠EPF+∠PFD=360°,即可求出a+β的值.
解:∵AB∥CD,
∴∠AEF+∠CFE=180°,
又∵EP平分∠AEF,FP平分∠EFC
∴∠PEF+∠PFE=(∠AEF+∠CFE)=×180°=90°
∴∠EPF=90°
又∠BEF+∠EFD=180°,且△PEF內角和為360°
∴∠BEP+∠EPF+∠PFD=360°
∴∠BEP+∠PFD=α+β=360°-∠EPF=360°-90°=270°.
故選:C
科目:初中數學 來源: 題型:
【題目】已知,如圖,點P是平行四邊形ABCD外一點,PE∥AB交BC于點E.PA、PD分別交BC于點M、N,點M是BE的中點.
(1)求證:CN=EN;
(2)若平行四邊形ABCD的面積為12,求△PMN的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校初二和初三兩個年級各有600名同學,為了科普衛(wèi)生防疫知識,學校組織了一次在線知識競賽,小宇分別從初二、初三兩個年級隨機抽取了40名同學的成績(百分制),并對數據(成績)進行整理、描述和分析,下面給出了部分信息.
.初二、初三年級學生知識競賽成績不完整的頻數分布直方圖如下(數據分成5組:,,,,):
.初二年級學生知識競賽成績在這一組的數據如下:
80 80 81 83 83 84 84 85 86 87 88 89 89
.初二、初三學生知識競賽成績的平均數、中位數、方差如下:
平均數 | 中位數 | 方差 | |
初二年級 | 80.8 | 96.9 | |
初三年級 | 80.6 | 86 | 153.3 |
根據以上信息,回答下列問題:
(1)補全上面的知識競賽成績頻數分布直方圖;
(2)寫出表中的值;
(3)同學看到上述的信息后,說自己的成績能在本年級排在前40%,同學看到同學的成績后說:“很遺憾,你的成績在我們年級進不了前50%”.請判斷同學是________(填“初二”或“初三”)年級的學生,你判斷的理由是________.
(4)若成績在85分及以上為優(yōu)秀,請估計初二年級競賽成績優(yōu)秀的人數為____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學九(5)班為了了解全班學生喜歡球類活動的情況,采取全面調查的方法,從足球、乒乓球、籃球、排球等四個方面調查了全班學生的興趣愛好,根據調查的結果組建了4個興趣小組,并繪制成如下的兩幅不完整的統計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),請你根據圖中提供的信息解答下列問題:
(1)九(5)班的學生人數為_________,并把條形統計圖補充完整;
(2)扇形統計圖中n=__________,m=___________;
(3)排球興趣小組4名學生中有2男2女,現在打算從中隨機選出2名學生參加學校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學生恰好是一男一女的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點的坐標是.圖1中,點為正方形的對稱中心,頂點分別在軸和軸的正半軸上,則___ 圖2中,點為正的重心,頂點分別在軸和軸的正半軸上,則___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,點O在BD上,以O為圓心的圓恰好經過A、B、C三點,⊙O交BD于E,交AD于F,且,連接OA、OF.
(1)求證:四邊形ABCD是菱形;
(2)若∠AOF=3∠FOE,求∠ABC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等邊三角形的邊長為,且其三個頂點均在拋物線上.
(1)求拋物線的解析式;
(2)若過原點的直線與直線分別交拋物線于點、,
①當時,試求的面積;
②試證明:不論實數取何值,直線總是經過一定點.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com