【題目】某中學(xué)九(5)班為了了解全班學(xué)生喜歡球類活動的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個興趣小組,并繪制成如下的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:
(1)九(5)班的學(xué)生人數(shù)為_________,并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中n=__________,m=___________;
(3)排球興趣小組4名學(xué)生中有2男2女,現(xiàn)在打算從中隨機選出2名學(xué)生參加學(xué)校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是一男一女的概率.
【答案】(1)40;圖見解析 (2)10;20 (3)
【解析】
(1)根據(jù)喜歡籃球的人數(shù)與所占的百分比列式計算即可求出學(xué)生的總?cè)藬?shù),再求出喜歡足球的人數(shù),然后補全統(tǒng)計圖即可;
(2)分別求出喜歡排球、喜歡足球的百分比即可得到m、n的值;
(3)畫出樹狀圖,然后根據(jù)概率公式列式計算即可得解.
解:(1)九(5)班的學(xué)生人數(shù)為:12÷30%=40(人),
喜歡足球的人數(shù)為:4041216=4032=8(人),
補全統(tǒng)計圖如圖所示;
(2)∵×100%=10%,
×100%=20%,
∴m=10,n=20,
(3)根據(jù)題意畫出樹狀圖如下:
一共有12種情況,恰好是1男1女的情況有8種,
∴P(恰好是1男1女)==
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將正方形繞點逆時針旋轉(zhuǎn)后得到正方形,依此方式,繞點連續(xù)旋轉(zhuǎn)次得到正方,如果點的坐標(biāo)為,那么的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,的頂點均在格點上.
(Ⅰ)的長等于__________;
(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中,畫出點,點E在上,且,點F在上,使其滿足,并簡要說明點的位置是如何找到的(不要求證明)______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是菱形,,點從點出發(fā),沿運動,過點作直線的垂線,垂足為,設(shè)點運動的路程為,的面積為,則下列圖象能正確反映與之間的函數(shù)關(guān)系的是( ).
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸于兩點,交軸于點直線經(jīng)過點.
(1)求拋物線的解析式;
(2)點是直線下方的拋物線上一動點,過點作軸于點交直線于點設(shè)點的橫坐標(biāo)為若求的值;
(3)是第一象限對稱軸右側(cè)拋物線上的一點,連接拋物線的對稱軸上是否存在點.使得與相似,且為直角,若存在,請直接寫出點的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB//CD,直線EF交AB于點E,交CD于點F,EP平分∠AEF,FP平分∠CFE,∠BEP=α,∠DFP=β,則a+β=( )
A.180°B.225°C.270°D.315°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,投擲一枚均勻的硬幣,落地時正面或反面向上的可能性相同.有甲、乙兩人做投硬幣實驗,他們分別投硬幣100次,結(jié)果“正面向上”的次數(shù)為:甲60次、乙40次.
(1)求甲、乙做投硬幣實驗“正面向上”的頻率各是多少?
(2)若甲、乙同時做第101次投硬幣實驗,求“正面都向上”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一張矩形ABCD紙片中,AD=30,AB=25,先將這張紙片沿著過點A的直線折疊,使得點B落在矩形的對稱軸上,折痕交矩形的邊于點E,則折痕AE的長為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com