【題目】為了解某校初三學生英語口語檢測成績等級的分布情況,隨機抽取了該校若干名學生的英語口語檢測成績,按A,B,C,D四個等級進行統(tǒng)計分析,并繪制可如下尚不完整的統(tǒng)計圖;請根據(jù)以上統(tǒng)計圖提供的信息,解答下列問題:

(1)本次抽取的學生有名;
(2)補全條形統(tǒng)計圖;
(3)在抽取的學生中C級人數(shù)所占的百分比是
(4)根據(jù)抽樣調查結果,請你估計某校860名初三學生英語口語檢測成績等級為A級的人數(shù).

【答案】
(1)100
(2)解:B等級的人數(shù)是:100×25%=25(人).

補圖如下:


(3)30%
(4)解:根據(jù)題意得:860×20%=172(人).

答:某校860名初三學生英語口語檢測成績等級為A級的人數(shù)是172人


【解析】解:(1)本次抽取的學生有 =100(人).

所以答案是:100;

⑶C等級所占的百分比是:1﹣25%﹣20%﹣25%=30%.

所以答案是:30%;

【考點精析】解答此題的關鍵在于理解扇形統(tǒng)計圖的相關知識,掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況,以及對條形統(tǒng)計圖的理解,了解能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形ABCD的邊ADx軸上,點Cy軸的負半軸上,直線BCAD,且BC3OD2,將經(jīng)過AB兩點的直線ly=﹣2x10向右平移,平移后的直線與x軸交于點E,與直線BC交于點F,設AE的長為tt0).

1)四邊形ABCD的面積為   ;(提示:小學已學過梯形面積計算方法)

2)設四邊形ABCD被直線l掃過的面積(陰影部分)為S,請寫出S關于t的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點P(x0 , y0)和直線y=kx+b,則點P到直線y=kx+b的距離證明可用公式d= 計算.
例如:求點P(﹣1,2)到直線y=3x+7的距離.
解:因為直線y=3x+7,其中k=3,b=7.
所以點P(﹣1,2)到直線y=3x+7的距離為:d= = = =
根據(jù)以上材料,解答下列問題:
(1)求點P(1,﹣1)到直線y=x﹣1的距離;
(2)已知⊙Q的圓心Q坐標為(0,5),半徑r為2,判斷⊙Q與直線y= x+9的位置關系并說明理由;
(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過平行四邊形ABCD的對角線BD 上一點M 分別作平行四邊形兩邊的平行線EFGH ,那么圖中面積相等的四邊形

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,對角線AC、BD相交于點OAOD的周長比AOB的周長小3 cm.若AD5 cm,則平行四邊形ABCD的周長為______cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在四邊形ABCD中,ADBC,且BC=12cm,AD=18cm,P、Q分別從A、C同時出發(fā),P2cm/s的速度由AD運動,Q4cm/s的速度由CB運動,問當多少秒時,直線QP將四邊形ABCD截出一個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,一張矩形紙片ABCD,其中AD=8cm,AB=6cm,先沿對角線BD對折,點C落在點C′的位置,BC′交AD于點G.

(1)求證:AG=C′G;
(2)如圖2,再折疊一次,使點D與點A重合,得折痕EN,EN交AD于點M,求EM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,3).延長CB交x軸于點A1 , 作正方形A1B1C1C;延長C1B1交x軸于點A2 , 作正方形A2B2C2C1…,按這樣的規(guī)律進行下去,第4個正方形的邊長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩條長度均為2的線段和線段互相重合,將沿直線向左平移個單位長度,將沿直線向右也平移個單位長度,當、是線段的三等分點時,則的值為________.

查看答案和解析>>

同步練習冊答案