【題目】如圖,將正方形ABCD折疊,使點(diǎn)ACD邊上的點(diǎn)H重合(H不與C,D重合),折痕交AD于點(diǎn)E,交BC于點(diǎn)F,邊AB折疊后與邊BC交于點(diǎn)G.設(shè)正方形ABCD周長(zhǎng)為m,△CHG周長(zhǎng)為n,則的值為(  )

A.B.C.D.

【答案】B

【解析】

由題意連接AH、AG,作AMHGM.利用正方形的性質(zhì)以及全等三角形的判定與性質(zhì)進(jìn)行等量替換從而求出的值.

解:連接AHAG,作AMHGM

∵四邊形ABCD是正方形,

AD=AB

AM=AB

EA=EH,

∴∠1=2,

∵∠EAB=EHG=90°,

∴∠HAB=AHG,

DHAB

∴∠DHA=HAB=AHM,

AH=AH,∠D=AMH=90°,

∴△AHD≌△AHM,

DH=HMAD=AM,

AM=ABAG=AG,

RtAGMRtAGB

GM=GB,

∴△GCH的周長(zhǎng)=n=CH+HM+MG+CG=CH+DH+CG+GB=2BC

∵四邊形ABCD的周長(zhǎng)=m=4BC,

.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn),如果這三種可能性大小相同,現(xiàn)有兩輛汽車經(jīng)過(guò)這個(gè)十字路口.

1)試用樹狀圖或列表法中的一種列舉出這兩中的一種列舉出這輛汽車行駛方向所有可能的結(jié)果;

2)求至少有一輛汽車向左轉(zhuǎn)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司擬用運(yùn)營(yíng)指數(shù)y來(lái)量化考核司機(jī)的工作業(yè)績(jī),運(yùn)營(yíng)指數(shù)(y)與運(yùn)輸次數(shù)(n)和平均速度(x)之間滿足關(guān)系式為y=ax2bnx100,當(dāng)n=1,x=30時(shí),y=190;當(dāng)n=2,x=40時(shí),y=420

用含xn的式子表示y;

當(dāng)運(yùn)輸次數(shù)定為3次,求獲得最大運(yùn)營(yíng)指數(shù)時(shí)的平均速度;

n=2,x=40,能否在n增加m%m0,同時(shí)x減少m%的情況下,而y的值保持不變,若能,求出m的值;若不能,請(qǐng)說(shuō)明理由.

參考公式:拋物線y=ax2bxca≠0)的頂點(diǎn)坐標(biāo)是(-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BE平分∠ABCAC于點(diǎn)E,作EDEBAB于點(diǎn)D,OBED的外接圓.

(1)求證:AC是⊙O的切線;

(2)已知⊙O的半徑為2.5,BE=4,求BC,AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,點(diǎn)PCD上一動(dòng)點(diǎn),連結(jié)PA,分別過(guò)點(diǎn)B、DBEPADFPA,垂足為E、F,如圖①.

1)請(qǐng)?zhí)剿?/span>BE、DF、EF這三條線段長(zhǎng)度具有怎樣的數(shù)量關(guān)系,若點(diǎn)PDC的延長(zhǎng)線上(如圖②),那么這三條線段的長(zhǎng)度之間又有怎樣的數(shù)量關(guān)系?若點(diǎn)PCD的延長(zhǎng)線上呢(如圖③)?請(qǐng)分別直接寫出結(jié)論.

2)請(qǐng)?jiān)冢?/span>1)中的三個(gè)結(jié)論中選擇一個(gè)加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件,出廠價(jià)為每件,每月銷售量(件)與銷售單價(jià)(元)之間的關(guān)系近似滿足一次函數(shù):

1)李明在開始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?

2)設(shè)李明獲得的利潤(rùn)為(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?

3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于元.如果李明想要每月獲得的利潤(rùn)不低于,那么政府為他承擔(dān)的總差價(jià)最少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市以20/千克的進(jìn)貨價(jià)購(gòu)進(jìn)了一批綠色食品,如果以30/千克銷售這些綠色食品,那么每天可售出400千克.由銷售經(jīng)驗(yàn)可知,每天的銷售量y(千克)與銷售單價(jià)x(元)(x30)存在如圖所示的一次函數(shù)關(guān)系.

1)試求出yx的函數(shù)關(guān)系式;

2)設(shè)該超市銷售該綠色食品每天獲得利潤(rùn)w元,當(dāng)銷售單價(jià)為何值時(shí),每天可獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小李準(zhǔn)備進(jìn)行如下的操作,把一根長(zhǎng)的鐵絲剪成兩段,并把每段首尾相連各圍成一個(gè)長(zhǎng)寬不等的矩形,兩矩形相似且相似比為

1)要使這兩個(gè)矩形的面積之和為,較小矩形的長(zhǎng)寬各是多少?

2)小李認(rèn)為這兩個(gè)矩形的面積和不可能為,你同意嗎?說(shuō)明理由.(說(shuō)明:相似多邊形的周長(zhǎng)比等于相似比,面積比等于相似比的平方)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A,C分別在y軸,x軸上,點(diǎn)B的坐標(biāo)為,直線分別交AB,BC于點(diǎn)M,N,,反比例函數(shù)圖象經(jīng)過(guò)點(diǎn)M,N

1)求反比例函數(shù)的表達(dá)式;

2)根據(jù)圖象,請(qǐng)直接寫出不等式的解集________

查看答案和解析>>

同步練習(xí)冊(cè)答案