【題目】如圖,將△ABC沿著過(guò)AB中點(diǎn)D的直線(xiàn)折疊,使點(diǎn)A落在BC邊上的A1處,稱(chēng)為第1次操作,折痕DE到BC的距離記為h1;還原紙片后,再將△ADE沿著過(guò)AD中點(diǎn)D1的直線(xiàn)折疊,使點(diǎn)A落在DE邊上的A2處,稱(chēng)為第2次操作,折痕D1E1到BC的距離記為h2;按上述方法不斷操作下去…,經(jīng)過(guò)第2015次操作后得到的折痕D2014E2014到BC的距離記為h2015 . 若h1=1,則h2015的值為(
A.
B.
C.1﹣
D.2﹣

【答案】D
【解析】解:連接AA1 ,
由折疊的性質(zhì)可得:AA1⊥DE,DA=DA1
又∵D是AB中點(diǎn),
∴DA=DB,
∴DB=DA1 ,
∴∠BA1D=∠B,
∴∠ADA1=2∠B,
又∵∠ADA1=2∠ADE,
∴∠ADE=∠B,
∴DE∥BC,
∴AA1⊥BC,
∴AA1=2,
∴h1=2﹣1=1,
同理,h2=2﹣ ,h3=2﹣ =2﹣ ,

∴經(jīng)過(guò)第n次操作后得到的折痕Dn1En1到BC的距離hn=2﹣ ,
∴h2015=2﹣ ,
故選D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角形中位線(xiàn)定理的相關(guān)知識(shí),掌握連接三角形兩邊中點(diǎn)的線(xiàn)段叫做三角形的中位線(xiàn);三角形中位線(xiàn)定理:三角形的中位線(xiàn)平行于三角形的第三邊,且等于第三邊的一半,以及對(duì)翻折變換(折疊問(wèn)題)的理解,了解折疊是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)的連線(xiàn)的垂直平分線(xiàn),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式組 的解集在數(shù)軸上正確表示的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解八年級(jí)學(xué)生最喜歡的球類(lèi)情況,隨機(jī)抽取了八年級(jí)部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,調(diào)查分為最喜歡籃球、乒乓球、足球、排球共四種情況,每名同學(xué)選且只選一項(xiàng),現(xiàn)將調(diào)查結(jié)果繪制成如下所示的兩幅統(tǒng)計(jì)圖.
請(qǐng)結(jié)合這兩幅統(tǒng)計(jì)圖,解決下列問(wèn)題:
(1)在這次問(wèn)卷調(diào)查中,一共抽取了名學(xué)生;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校八年級(jí)共有300名學(xué)生,請(qǐng)你估計(jì)其中最喜歡排球的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=﹣x2+(m﹣1)x+m(m為常數(shù)).
(1)該函數(shù)的圖象與x軸公共點(diǎn)的個(gè)數(shù)是
A.0
B.1
C.2
D.1或2
(2)求證:不論m為何值,該函數(shù)的圖象的頂點(diǎn)都在函數(shù)y=(x+1)2的圖象上.
(3)當(dāng)﹣2≤m≤3時(shí),求該函數(shù)的圖象的頂點(diǎn)縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為加強(qiáng)中小學(xué)生安全教育,某校組織了“防溺水”知識(shí)競(jìng)賽,對(duì)表現(xiàn)優(yōu)異的班級(jí)進(jìn)行獎(jiǎng)勵(lì),學(xué)校購(gòu)買(mǎi)了若干副乒乓球拍和羽毛球拍,購(gòu)買(mǎi)2副乒乓球拍和1副羽毛球拍共需116元;購(gòu)買(mǎi)3副乒乓球拍和2副羽毛球拍共需204元.
(1)求購(gòu)買(mǎi)1副乒乓球拍和1副羽毛球拍各需多少元;
(2)若學(xué)校購(gòu)買(mǎi)乒乓球拍和羽毛球拍共30幅,且支出不超過(guò)1480元,則最多能夠購(gòu)買(mǎi)多少副羽毛球拍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)y=(x﹣m)2﹣(x﹣m),其中m是常數(shù).
(1)求證:不論m為何值,該拋物線(xiàn)與x軸一定有兩個(gè)公共點(diǎn);
(2)若該拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=
①求該拋物線(xiàn)的函數(shù)解析式;
②把該拋物線(xiàn)沿y軸向上平移多少個(gè)單位長(zhǎng)度后,得到的拋物線(xiàn)與x軸只有一個(gè)公共點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)y= 的圖象經(jīng)過(guò)點(diǎn)(﹣1,﹣2 ),點(diǎn)A是該圖象第一象限分支上的動(dòng)點(diǎn),連結(jié)AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為斜邊作等腰直角三角形ABC,頂點(diǎn)C在第四象限,AC與x軸交于點(diǎn)P,連結(jié)BP.

(1)k的值為
(2)在點(diǎn)A運(yùn)動(dòng)過(guò)程中,當(dāng)BP平分∠ABC時(shí),點(diǎn)C的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC是矩形ABCD的對(duì)角線(xiàn),⊙O是△ABC的內(nèi)切圓,現(xiàn)將矩形ABCD按如圖所示的方式折疊,使點(diǎn)D與點(diǎn)O重合,折痕為FG.點(diǎn)F,G分別在邊AD,BC上,連結(jié)OG,DG.若OG⊥DG,且⊙O的半徑長(zhǎng)為1,則下列結(jié)論不成立的是(
A.CD+DF=4
B.CD﹣DF=2 ﹣3
C.BC+AB=2 +4
D.BC﹣AB=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各題
(1)計(jì)算: ﹣4sin45°﹣ +
(2)先化簡(jiǎn),再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣

查看答案和解析>>

同步練習(xí)冊(cè)答案