精英家教網 > 初中數學 > 題目詳情

【題目】已知拋物線y=(x﹣m)2﹣(x﹣m),其中m是常數.
(1)求證:不論m為何值,該拋物線與x軸一定有兩個公共點;
(2)若該拋物線的對稱軸為直線x=
①求該拋物線的函數解析式;
②把該拋物線沿y軸向上平移多少個單位長度后,得到的拋物線與x軸只有一個公共點.

【答案】
(1)

證明:y=(x﹣m)2﹣(x﹣m)=x2﹣(2m+1)x+m2+m,

∵△=(2m+1)2﹣4(m2+m)=1>0,

∴不論m為何值,該拋物線與x軸一定有兩個公共點


(2)

解:①∵x=﹣ = ,

∴m=2,

∴拋物線解析式為y=x2﹣5x+6;

②設拋物線沿y軸向上平移k個單位長度后,得到的拋物線與x軸只有一個公共點,則平移后拋物線解析式為y=x2﹣5x+6+k,

∵拋物線y=x2﹣5x+6+k與x軸只有一個公共點,

∴△=52﹣4(6+k)=0,

∴k= ,

即把該拋物線沿y軸向上平移 個單位長度后,得到的拋物線與x軸只有一個公共點


【解析】(1)先把拋物線解析式化為一般式,再計算△的值,得到△=1>0,于是根據△=b2﹣4ac決定拋物線與x軸的交點個數即可判斷不論m為何值,該拋物線與x軸一定有兩個公共點;(2)①根據對稱軸方程得到=﹣ = ,然后解出m的值即可得到拋物線解析式;②根據拋物線的平移規(guī)律,設拋物線沿y軸向上平移k個單位長度后,得到的拋物線與x軸只有一個公共點,則平移后拋物線解析式為y=x2﹣5x+6+k,再利用拋物線與x軸的只有一個交點得到△=52﹣4(6+k)=0,然后解關于k的方程即可.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】從甲學校到乙學校有A1、A2、A3三條線路,從乙學校到丙學校有B1、B2二條線路.
(1)利用樹狀圖或列表的方法表示從甲學校到丙學校的線路中所有可能出現的結果;
(2)小張任意走了一條從甲學校到丙學校的線路,求小張恰好經過了B1線路的概率是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點E在邊BC上移動(點E不與點B,C重合),滿足∠DEF=∠B,且點D、F分別在邊AB、AC上.
(1)求證:△BDE∽△CEF;
(2)當點E移動到BC的中點時,求證:FE平分∠DFC.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:| ﹣1|+(2017﹣π)0﹣( 1﹣3tan30°+

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將△ABC沿著過AB中點D的直線折疊,使點A落在BC邊上的A1處,稱為第1次操作,折痕DE到BC的距離記為h1;還原紙片后,再將△ADE沿著過AD中點D1的直線折疊,使點A落在DE邊上的A2處,稱為第2次操作,折痕D1E1到BC的距離記為h2;按上述方法不斷操作下去…,經過第2015次操作后得到的折痕D2014E2014到BC的距離記為h2015 . 若h1=1,則h2015的值為(
A.
B.
C.1﹣
D.2﹣

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在方格紙中,線段a,b,c,d的端點在格點上,通過平移其中兩條線段,使得和第三條線段首尾相接組成三角形,則能組成三角形的不同平移方法有(
A.3種
B.6種
C.8種
D.12種

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某乒乓球館使用發(fā)球機進行輔助訓練,出球口在桌面中線端點A處的正上方,假設每次發(fā)出的乒乓球的運動路線固定不變,且落在中線上.在乒乓球運行時,設乒乓球與端點A的水平距離為x(米),與桌面的高度為y(米),運行時間為t(秒),經多次測試后,得到如下部分數據:

t(秒)

0

0.16

0.2

0.4

0.6

0.64

0.8

6

X(米)

0

0.4

0.5

1

1.5

1.6

2

y(米)

0.25

0.378

0.4

0.45

0.4

0.378

0.25


(1)當t為何值時,乒乓球達到最大高度?
(2)乒乓球落在桌面時,與端點A的水平距離是多少?
(3)乒乓球落在桌面上彈起后,y與x滿足y=a(x﹣3)2+k.
①用含a的代數式表示k;
②球網高度為0.14米,球桌長(1.4×2)米.若球彈起后,恰好有唯一的擊球點,可以將球沿直線扣殺到點A,求a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了深化課程改革,某校積極開展校本課程建設,計劃成立“文學鑒賞”、“科學實驗”、“音樂舞蹈”和“手工編織”等多個社團,要求每位學生都自主選擇其中一個社團.為此,隨機調查了本校各年級部分學生選擇社團的意向,并將調查結果繪制成如下統(tǒng)計圖表(不完整):

選擇意向

所占百分比

文學鑒賞

a

科學實驗

35%

音樂舞蹈

b

手工編織

10%

其他

c

根據統(tǒng)計圖表中的信息,解答下列問題:

(1)求本次調查的學生總人數及a,b,c的值;
(2)將條形統(tǒng)計圖補充完整;
(3)若該校共有1200名學生,試估計全校選擇“科學實驗”社團的學生人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果二次函數的二次項系數為l,則此二次函數可表示為y=x2+px+q,我們稱[p,q]為此函數的特征數,如函數y=x2+2x+3的特征數是[2,3].
(1)若一個函數的特征數為[﹣2,1],求此函數圖象的頂點坐標.
(2)探究下列問題: ①若一個函數的特征數為[4,﹣1],將此函數的圖象先向右平移1個單位,再向上平移1個單位,求得到的圖象對應的函數的特征數.
②若一個函數的特征數為[2,3],問此函數的圖象經過怎樣的平移,才能使得到的圖象對應的函數的特征數為[3,4]?

查看答案和解析>>

同步練習冊答案