【題目】如圖,在△ABC中,∠B=30°,邊AB的垂直平分線分別交AB和BC于點D,E,且AE平分∠BAC.
(1)求∠C的度數(shù);
(2)若CE=1,求AB的長.
【答案】(1);(2).
【解析】
(1)先由線段垂直平分線的性質(zhì)及∠B=30°求出∠BAE=30°,再由AE平分∠BAC可得出∠EAC=∠BAE=30°,由三角形內(nèi)角和定理即可求出∠C的度數(shù).
(2)先求出∠EAC=30°,在Rt△AEC中,利用特殊角的三角函數(shù)求解直角三角形,可解得AC的長為,再在Rt△ABC中,利用特殊角的三角函數(shù)求解直角三角形,可解得AB 的長.
(1)∵DE是線段AB的垂直平分線,∠B=30°,
∴∠BAE=∠B=30°,
∵AE平分∠BAC,
∴∠EAC=∠BAE=30°,
即∠BAC=60°,
∴∠C=180°﹣∠BAC﹣∠B=180°﹣60°﹣30°=90°.
(2)∵∠C=90°,∠B=30°,
∴∠BAC=60°
∵AE平分∠BAC
∴∠EAC=30°
∵CE=1,∠C=90°
∴AC==,
∴AB==2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC邊在直線a上,將△ABC繞點A順時針旋轉(zhuǎn)到位置①可得到點P1,此時AP1=;將位置①的三角形繞點P1順時針旋轉(zhuǎn)到位置②可得到點P2,此時AP2=+1;將位置②的三角形繞點P2順時針旋轉(zhuǎn)到位置③可得到點P3時,AP3=+2…按此規(guī)律繼續(xù)旋轉(zhuǎn),直至得到點為止,則=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共50個,小穎做摸球?qū)嶒,她將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復上述過程,下表是試驗中的一組統(tǒng)計數(shù)據(jù):
摸到球的次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù) | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的概率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)請估計當很大時,摸到白球的頻率將會接近______;(精確到0.1);
(2)假如隨機摸一次,摸到白球的概率P(白球)=______;
(3)試估算盒子里白色的球有多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,8塊相同的小長方形地磚拼成一個大長方形,
(1)每塊小長方形地磚的長和寬分別是多少?(要求列方程組進行解答)
(2)小明想用一塊面積為7平方米的正方形桌布,沿著邊的方向裁剪出一塊新的長方形桌布,用來蓋住這塊長方形木桌,你幫小明算一算,他能剪出符合要求的桌布嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AD=3,CD=4,點E在CD上,且DE=1.
(1)感知:如圖①,連接AE,過點E作EF丄AE,交BC于點F,連接AE,易證:△ADE≌△ECF(不需要證明);
(2)探究:如圖②,點P在矩形ABCD的邊AD上(點P不與點A、D重合),連接PE,過點E作EF⊥PE,交BC于點F,連接PF.求證:△PDE和△ECF相似;
(3)應用:如圖③,若EF交AB于點F,EF丄PE,其他條件不變,且△PEF的面積是6,則AP的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數(shù)與用150元購進乙種玩具的件數(shù)相同.
(1)求每件甲種、乙種玩具的進價分別是多少元?
(2)商場計劃購進甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進貨的總資金不超過1000元,求商場共有幾種進貨方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在4×4的正方形(每個小正方形的邊長均為1)網(wǎng)格中,以A為頂點,其他三個頂點都在格點(網(wǎng)格的交點)上,且面積為2的平行四邊形共有多少個?( )
A.12B.16C.24D.25
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有下列說法:()單項式的系數(shù)、次數(shù)都是;()多項式的系數(shù)是,它是三次二項式;()單項式與都是七次單項式;(4)單項式和的系數(shù)分別是或;()是二次單項式;()與都是整式,其中正確的說法有( ).
A.個B. C.個D.個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,過點A作⊙O的切線,交OC的延長線于點D,∠D=30°
(1)求∠B的度數(shù);
(2)若OD⊥AB,BC=5,求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com