【題目】已知點都在直線上,,分別為中點,直線上所有線段的長度之和為19,則__________.
【答案】或4
【解析】
根據(jù)點C與點B的位置關(guān)系分類討論,分別畫出對應(yīng)的圖形,推出各線段與AC的關(guān)系,根據(jù)直線上所有線段的長度之和為19,列出關(guān)于AC的方程即可求出AC.
解:若點C在點B左側(cè)時,如下圖所示:
∵
∴
∴BC=,AB=
∵點分別為中點
∴AD=DC=,CE=BE=
∴AE=AC+CE=,DE=DC+CE=,DB=DC+CB=AC
∵直線上所有線段的長度之和為19
∴AD+AC+AE+AB+DC+DE+DB+CE+CB+EB=19
即+AC+++++AC+++=19
解得:AC=;
若點C在點B右側(cè)時,如下圖所示:
∵
∴
∴BC=,AB=
∵點分別為中點
∴AD=DC=,CE=BE=
∴AE=AC-CE=,DE=DC-CE=,DB=DC-CB=
∵直線上所有線段的長度之和為19
∴AD+AC+AE+AB+DC+DE+DB+CE+CB+EB=19
即+AC++++++++=19
解得:AC=
綜上所述:AC=或4.
故答案為:或4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】微信運動和騰訊公益推出了一個愛心公益活動:一天中走路步數(shù)達到10000步及以上可通過微信運動和騰訊基金會向公益活動捐款,如果步數(shù)在10000步及以上,每步可捐0.0002元;若步數(shù)在10000步以下,則不能參與捐款.
(1)老趙某天的步數(shù)為13000步,則他當(dāng)日可捐多少錢?
(2)已知甲、乙、丙三人某天通過步數(shù)共捐了8.4元,且甲的步數(shù)=乙的步數(shù)=丙步數(shù)的3倍,則丙走了多少步?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+2與坐標(biāo)軸交于A、B兩點,點A在x軸上,點B在y軸上,C點的坐標(biāo)為(1,0),拋物線y=ax2+bx+c經(jīng)過點A、B、C.
(1)求該拋物線的解析式;
(2)根據(jù)圖象直接寫出不等式ax2+(b﹣1)x+c>2的解集;
(3)點P是拋物線上一動點,且在直線AB上方,過點P作AB的垂線段,垂足為Q點.當(dāng)PQ=時,求P點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組
請結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得 ;
(Ⅱ)解不等式②,得 ;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(Ⅳ)原不等式組的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線的函數(shù)解析式為,且與軸交于點,直線經(jīng)過點、,直線、交于點.
(1)求直線的函數(shù)解析式;
(2)求的面積;
(3)在直線上是否存在點,使得面積是面積的倍?如果存在,請求出坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的角平分線,,是的角平分線,
(1)求;
(2)繞點以每秒的速度逆時針方向旋轉(zhuǎn)秒(),為何值時;
(3)射線繞點以每秒的速度逆時針方向旋轉(zhuǎn),射線繞點以每秒的速度順時針方向旋轉(zhuǎn),若射線同時開始旋轉(zhuǎn)秒()后得到,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知的三個頂點的坐標(biāo)分別為,,.
(1)畫出關(guān)于原點中心對稱的,其中A,B,C的對應(yīng)點分別為,,;
(2)在(1)的基礎(chǔ)上,將向上平移4個單位長度,畫出平移后的,并寫出的對應(yīng)點的坐標(biāo);
(3)D為y軸上一點,且是以AB為直角邊的直角三角形.請直接寫出D點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個頂點的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).
(1)請在圖中,畫出△ABC向左平移6個單位長度后得到的△A1B1C1;
(2)以點O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請在圖中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達式為,點的坐標(biāo)為,以為圓心,為半徑畫圓,交直線l于點,交x軸正半軸于點,以為圓心,為半徑畫圓,交直線l于點,交x軸正半軸于點,以為圓心,為半徑畫圓,交直線l于點,交x軸正半軸于點;按此做法進行下去,其中的長為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com