【題目】如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點,CD=CB,延長CD交BA的延長線于點E.
(1)求證:CD為⊙O的切線;
(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)
【答案】
(1)證明:連接OD,
∵BC是⊙O的切線,
∴∠ABC=90°,
∵CD=CB,
∴∠CBD=∠CDB,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODC=∠ABC=90°,
即OD⊥CD,
∵點D在⊙O上,
∴CD為⊙O的切線
(2)解:在Rt△OBF中,
∵∠ABD=30°,OF=1,
∴∠BOF=60°,OB=2,BF= ,
∵OF⊥BD,
∴BD=2BF=2 ,∠BOD=2∠BOF=120°,
∴S陰影=S扇形OBD﹣S△BOD= ﹣ ×2 ×1= π﹣ .
【解析】(1)首先連接OD,由BC是⊙O的切線,可得∠ABC=90°,又由CD=CB,OB=OD,易證得∠ODC=∠ABC=90°,即可證得CD為⊙O的切線;(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的長,∠BOD的度數(shù),又由S陰影=S扇形OBD﹣S△BOD , 即可求得答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圖中的小方格都是邊長為1的正方形,△ABC的頂點坐標分別為:A(-3,0),B(-1,-2),C(-2,2).
(1)請在圖中畫出△ABC繞B點順時針旋轉(zhuǎn)90°后的圖形△A′BC′.
(2)請直接寫出以A′、B、C′為頂點平行四邊形的第4個頂點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀下列解題過程,然后解答問題
解方程:|x+3|=2.
解:當x+3≥0時,原方程可化為:x+3=2,解得x=﹣1
當x+3<0時,原方程可化為:x+3=﹣2,解得x=﹣5
所以原方程的解是x=﹣1,x=﹣5
(1)解方程:|3x﹣2|﹣4=0;
(2)探究:當b為何值時,方程|x﹣2|=b ①無解;②只有一個解;③有兩個解.
(3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A(0,1),M(3,2),N(4,4).動點P從點A出發(fā),沿軸以每秒1個單位長的速度向上移動,且過點P的直線也隨之移動,設(shè)移動時間為秒.
(1)當時,求直線的解析式;
(2)若點M,N位于直線的異側(cè),確定的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,△ABE和△CDF為直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,則EF的長是( 。
A. 7 B. 8 C. 7 D. 7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A、B、C在數(shù)軸上對應(yīng)的實數(shù)分別為a、b、c,滿足(b+5)2+|a﹣8|=0,點P位于該數(shù)軸上.
(1)求出a,b的值,并求A、B兩點間的距離;
(2)設(shè)點C與點A的距離為25個單位長度,且|ac|=﹣ac.若PB=2PC,求點P在數(shù)軸上對應(yīng)的實數(shù);
(3)若點P從原點開始第一次向左移動1個單位長度,第二次向右移動3個單位長度,第三次向左移動5個單位長度,第四次向右移動7個單位長度,…(以此類推).則點p 能移動到與點A或點B重合的位置嗎?若能,請?zhí)骄啃枰苿佣嗌俅沃睾?若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題6分)某市對一大型超市銷售的甲、乙、丙3種大米進行質(zhì)量檢測.共抽查大米200袋,質(zhì)量評定分為A、B兩個等級(A級優(yōu)于B級),相應(yīng)數(shù)據(jù)的統(tǒng)計圖如下:
根據(jù)所給信息,解決下列問題:
(1)a=_______,b=_______.
(2)已知該超市現(xiàn)有乙種大米750袋,根據(jù)檢測結(jié)果,請你估計該超市乙種大米中有多少袋B級大米?
(3)對于該超市的甲種和丙種大米,你會選擇購買哪一種?請簡述理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點,與y軸交C點,點A的坐標為(2,0),點C的坐標為(0,3)它的對稱軸是直線x= .
(1)求拋物線的解析式;
(2)M是線段AB上的任意一點,當△MBC為等腰三角形時,求M點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.
(1)求證:△ABF≌△EDF;
(2)若將折疊的圖形恢復(fù)原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com