【題目】某檢修小組從地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負(fù)。一天中七次行駛記錄如下。(單位: )

,,,,,

(1)求收工時(shí)距地多遠(yuǎn)?在地的什么方向?

(2)在第幾次記錄時(shí)離地最遠(yuǎn),并求出最遠(yuǎn)距離。

(3)若每千米耗油升。問共耗油多少升?

【答案】1)收工時(shí)距,在地東邊;(2)第五次記錄時(shí)離地最遠(yuǎn),距離;(3)耗油

【解析】

1)收工時(shí)距A地的距離等于所有記錄數(shù)字的和的絕對值;

2)分別計(jì)算每次距A地的距離,進(jìn)行比較即可;

3)所有記錄數(shù)的絕對值的和×0.3升,就是共耗油數(shù).

解:(1

答:收工時(shí)距,在地東邊.

2)第一次: 第二次:

第三次: 第四次:

第五次: 第六次:

第七次:

答:第五次記錄時(shí)離地最遠(yuǎn),距離.

3(升)

答:耗油.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,OBD的中點(diǎn),且AD=8,BD=12AC=20,ADB=90°.求BC的長和四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個(gè)車間接到加工一批零件的任務(wù),從開始加工到完成這項(xiàng)任務(wù)共用了9天.其間,乙車間在加工2天后停止加工,引入新設(shè)備后繼續(xù)加工,直到與甲車間同時(shí)完成這項(xiàng)任務(wù)為止,設(shè)甲、乙兩個(gè)車間各自加工零件總數(shù)y(單位:件)與加時(shí)間x(單位:天)的對應(yīng)關(guān)系如圖1所示,由工廠統(tǒng)計(jì)數(shù)據(jù)可知,甲車間與乙車間加工零件總數(shù)之差z(單位:件)與加時(shí)間x(單位:天)的對應(yīng)關(guān)系如圖2所示,請根據(jù)圖象提供的信息回答:

圖中的值是__________;

_________天時(shí),甲、乙兩個(gè)車間加工零件總數(shù)相同.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了深化改革,某校積極開展校本課程建設(shè),計(jì)劃成立文學(xué)鑒賞、科學(xué)實(shí)驗(yàn)、音樂舞蹈手工編織等多個(gè)社團(tuán),要求每位學(xué)生都自主選擇其中一個(gè)社團(tuán)為此,隨機(jī)調(diào)查了本校各年級部分學(xué)生選擇社團(tuán)的意向,并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖表(不完善)

根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:

(1)求次調(diào)查的學(xué)生總?cè)藬?shù)及a,b,c的值;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若該校共有1200名學(xué)生,試估計(jì)全校選擇科學(xué)實(shí)驗(yàn)社團(tuán)的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOCBOC互余,OD平分BOC,EOC2∠AOE

1)若AOD75°,AOE的度數(shù)

2)若DOE54°,EOC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°BD平分∠ABC,與AC交于點(diǎn)D,點(diǎn)OAB上一點(diǎn),⊙OBD兩點(diǎn),且分別交AB、BC于點(diǎn)E、F

1)求證:AC是⊙O的切線;

2)已知AB=10,BC=6,求⊙O的半徑r

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點(diǎn)E為△ABC的內(nèi)心,連接AE并延長交⊙O于D點(diǎn),連接BD并延長至F,使得BDDF,連接CF、BE.

(1)求證:DBDE;

(2)求證:直線CF為⊙O的切線;

(3)若CF4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx 2mx(m為常數(shù)),當(dāng)-1≤x≤2時(shí),函數(shù)y的最小值為-2,則m的值是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F

1)求證:AE=EF;

2)如圖2,若把條件點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC上的任意一點(diǎn),其余條件不變,(1)中的結(jié)論是否仍然成立?  ;(填成立不成立);

3)如圖3,若把條件點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC延長線上的一點(diǎn)其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請證明,若不成立說明理由.

查看答案和解析>>

同步練習(xí)冊答案