【題目】1)如圖1,在RtABC 中, D、E是斜邊BC上兩動(dòng)點(diǎn),且∠DAE=45°,將△繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90后,得到△,連接.

1)試說明:△≌△;

(2)當(dāng)BE=3,CE=9時(shí),求∠BCF的度數(shù)和DE的長; 

3)如圖2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜邊BC所在直線上一點(diǎn),BD=3BC=8,求DE2的長.

【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130

【解析】試題分析: 得到 從而得到

由△得到,再證明利用勾股定理即可得出結(jié)論.

過點(diǎn),根據(jù)等腰三角形三線合一得, 求出的長,即可求得.

試題解析:

中,

設(shè)

解得:

過點(diǎn),根據(jù)等腰三角形三線合一得,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】辰星旅游度假村有甲種風(fēng)格客房15間,乙種風(fēng)格客房20間.按現(xiàn)有定價(jià):若全部入住,一天營業(yè)額為8500元;若甲、乙兩種風(fēng)格客房均有10間入住,一天營業(yè)額為5000元.

(1)求甲、乙兩種客房每間現(xiàn)有定價(jià)分別是多少元?

(2)度假村以乙種風(fēng)格客房為例,市場情況調(diào)研發(fā)現(xiàn):若每個(gè)房間每天按現(xiàn)有定價(jià),房間會(huì)全部住滿;當(dāng)每個(gè)房間每天的定價(jià)每增加20元時(shí),就會(huì)有兩個(gè)房間空閑.如果游客居住房間,度假村需對每個(gè)房間每天支出80元的各種費(fèi)用.當(dāng)每間房間定價(jià)為多少元時(shí),乙種風(fēng)格客房每天的利潤最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(1,3),將點(diǎn)A繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)A,則點(diǎn)A的坐標(biāo)是( )

A. 3,1 B. (3,-1 C. 1,3 D. (1,-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC10,BD9,則△ADE的周長為(  )

A. 19B. 20C. 27D. 30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形,旋轉(zhuǎn)后能與重合.

1)旋轉(zhuǎn)中心是哪一點(diǎn)?

2)旋轉(zhuǎn)角度是多少度?

3)連結(jié)后,是什么三角形?簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń夥匠蹋?/span>

1)(2x5290

22x23x20

3x2+2x3990

42x3)=2xx3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小東設(shè)計(jì)的作矩形的尺規(guī)作圖過程,已知:

求作:矩形

作法:如圖,

①作線段的垂直平分線角交于點(diǎn);

②連接并延長,在延長線上截取

③連接

所以四邊形即為所求作的矩形

根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過程

1)使用直尺和圓規(guī),補(bǔ)全圖形:(保留作圖痕跡)

2)完成下邊的證明:

證明: ,,

四邊形是平行四邊形( )(填推理的依據(jù))

四邊形是矩形( )(填推理的依據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(一)如圖(1),已知圓,點(diǎn)在圓上,且為等邊三角形,點(diǎn)為直線與圓的一個(gè)交點(diǎn).連接,,證明:

(方法遷移)

(二)如圖(2),用直尺和圓規(guī)在矩形內(nèi)作出所有的點(diǎn),使得(不寫作法,保留作圖痕跡).

(深入探究)

(三)已知矩形,,邊上的點(diǎn),若滿足的點(diǎn)P恰有兩個(gè),求的取值范圍.

(四)已知矩形,,,為矩形內(nèi)一點(diǎn),且,若點(diǎn)繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到點(diǎn),求的最小值,并求此時(shí)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖1,二次函數(shù)yax2+2ax3aa≠0)圖象的頂點(diǎn)為Cx軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),點(diǎn)CB關(guān)于過點(diǎn)A的直線lykx+對稱.

1)求A、B兩點(diǎn)坐標(biāo)及直線l的解析式;

2)求二次函數(shù)解析式;

3)如圖2,過點(diǎn)B作直線BDAC交直線lD點(diǎn),M、N分別為直線AC和直線l上的兩個(gè)動(dòng)點(diǎn),連接CN,MMMD,求CN+NM+MD的最小值.

查看答案和解析>>

同步練習(xí)冊答案