【題目】辰星旅游度假村有甲種風格客房15間,乙種風格客房20間.按現(xiàn)有定價:若全部入住,一天營業(yè)額為8500元;若甲、乙兩種風格客房均有10間入住,一天營業(yè)額為5000元.

(1)求甲、乙兩種客房每間現(xiàn)有定價分別是多少元?

(2)度假村以乙種風格客房為例,市場情況調(diào)研發(fā)現(xiàn):若每個房間每天按現(xiàn)有定價,房間會全部住滿;當每個房間每天的定價每增加20元時,就會有兩個房間空閑.如果游客居住房間,度假村需對每個房間每天支出80元的各種費用.當每間房間定價為多少元時,乙種風格客房每天的利潤最大,最大利潤是多少元?

【答案】(1)甲、乙兩種客房每間現(xiàn)有定價分別是300元、200元;(2)每間房間定價為240元時,乙種風格客房每天的利潤最大,最大利潤是2560元.

【解析】

(1)根據(jù)題意“若全部入住,一天營業(yè)額為8500元;若甲、乙兩種風格客房均有10間入住,一天營業(yè)額為5000元”設(shè)未知數(shù)列出相應的二元一次方程組,解方程組即可解答本題;

(2)根據(jù)題意列出關(guān)于乙種房價的函數(shù)關(guān)系式,然后根據(jù)二次函數(shù)的性質(zhì)即可解答本題.

解:設(shè)甲、乙兩種客房每間現(xiàn)有定價分別是元、元,

根據(jù)題意,得:

解得,

答:甲、乙兩種客房每間現(xiàn)有定價分別是300元、200元;

(2)設(shè)每天的定價增加了20元,則有個房間空閑,

根據(jù)題意得:,

,

∴當時,取得最大值,最大值為2560,此時房間的定價為元.

答:當每間房間定價為240元時,乙種風格客房每天的利潤最大,最大利潤是2560元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù).

1)用配方法求出該函數(shù)圖象的頂點坐標和對稱軸;

2)在如圖所示的平面直角坐標系中畫出該函數(shù)的大致圖象.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有個填寫運算符號的游戲:在“”中的每個□內(nèi),填入中的某一個(可重復使用),然后計算結(jié)果.

1)計算:;

2)若請推算□內(nèi)的符號;

3)在“”的□內(nèi)填入符號后,使計算所得數(shù)最小,直接寫出這個最小數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)y的圖象交于A2,3),B(﹣3,n)兩點.

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)過點BBCx軸,垂足為C,連接AC,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD的邊長為2,將射線AB繞點A順時針旋轉(zhuǎn)α,所得射線與線段BD交于點M,作CEAM于點E,點N與點M關(guān)于直線CE對稱,連接CN

(1)如圖,當0°<α<45°時:

①依題意補全圖;

②用等式表示∠NCE與∠BAM之間的數(shù)量關(guān)系:___________;

(2)當45°<α<90°時,探究∠NCE與∠BAM之間的數(shù)量關(guān)系并加以證明;

(3)當0°<α<90°時,若邊AD的中點為F,直接寫出線段EF長的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次數(shù)學課上,張老師出示了一個題目:如圖,ABCD的對角線相交于點O,過點OEF垂直于BDAB,CD分別于點F,E,連接DF,請根據(jù)上述條件,寫出一個正確結(jié)論其中四位同學寫出的結(jié)論如下:

小青:;小何:四邊形DFBE是正方形;

小夏:;小雨:

這四位同學寫出的結(jié)論中不正確的是  

A. 小青 B. 小何 C. 小夏 D. 小雨

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知,函數(shù)的圖象與軸有個交點,函數(shù)的圖象與軸有個交點,則的數(shù)量關(guān)系是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的口袋里裝有若干個除顏色外其余均相同的紅、黃、藍三種顏色的小球,其中紅球2個,藍球1個,若從中任意摸出一個球,摸到的球是紅球的概率為.

(1)求袋中黃球的個數(shù);

(2)第一次任意摸出一個球(不放回),第二次再摸出一個球,利用樹狀圖或劉表格求兩次摸到球的顏色是紅色與黃色的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在RtABC 中, ,D、E是斜邊BC上兩動點,且∠DAE=45°,將△繞點逆時針旋轉(zhuǎn)90后,得到△,連接.

1)試說明:△≌△

(2)當BE=3,CE=9時,求∠BCF的度數(shù)和DE的長; 

3)如圖2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜邊BC所在直線上一點,BD=3,BC=8,求DE2的長.

查看答案和解析>>

同步練習冊答案