【題目】如圖,正方形ABCD的邊長(zhǎng)為6,P為對(duì)角線AC上一點(diǎn),且CP=,PE⊥PB交CD于點(diǎn)E,則PE=( )
A.B.C.D.5
【答案】B
【解析】
過(guò)P作PM⊥BC于M,作PN⊥CD于N,易證△PBM≌△PEN,從而PB=PE,在Rt△PBM中求出BM、PM即可用勾股定理求解.
過(guò)P作PM⊥BC于M,作PN⊥CD于N,
∵四邊形ABCD是正方形
∴∠BMP=∠PMC=∠MCN=∠CNP=90°,CA平分∠BCD
∴PM=PN,∠MPN=90°
∵PE⊥PB
∴∠BPM+∠MPC=90°,∠MPC+∠EPN=90°
∴∠BPM=∠EPN
∴△PBM≌△PEN
∴PB=PE,
在Rt△PCM中,CP=4,∠PCM=45°
∴CM=PM=4
∴BM=BC-CM=2
在Rt△PBM中,PM=4,BM=2
∴PB=
∴PE=PB=
故選:B
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O直徑,AC為⊙O的弦,過(guò)⊙O外的點(diǎn)D作DE⊥OA于點(diǎn)E,交AC于點(diǎn)F,連接DC并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)P,且∠D=2∠A,作CH⊥AB于點(diǎn)H.
(1)判斷直線DC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若HB=2,cosD=,請(qǐng)求出AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰△ABC中,CA=CB=6,AB=6.點(diǎn)D在線段AB上運(yùn)動(dòng)(不與A、B重合),將△CAD與△CBD分別沿直線CA、CB翻折得到△CAE與△CBF,連接EF,則△CEF面積的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).
(1)請(qǐng)?jiān)趫D中,畫出△ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來(lái)的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,-1).
(1)請(qǐng)以y軸為對(duì)稱軸,畫出與△ABC對(duì)稱的△A1B1C1,并直接寫出點(diǎn)A1、B1、C1的坐標(biāo);
(2)△ABC的面積是 .
(3)點(diǎn)P(a+1,b-1)與點(diǎn)C關(guān)于x軸對(duì)稱,則a= ,b= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)是上一點(diǎn),且平分,點(diǎn)是上一點(diǎn),以為直徑的經(jīng)過(guò)點(diǎn).
求證:是的切線;
若的面積的面積,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=8,P,Q分別是直線BC,AB上的兩個(gè)動(dòng)點(diǎn),AE=2,△AEQ沿EQ翻折形成△FEQ,連接PF,PD,則PF+PD的最小值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O與AC邊交于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線交BC于點(diǎn)E,連接OE
(1)證明OE∥AD;
(2)①當(dāng)∠BAC= °時(shí),四邊形ODEB是正方形.
②當(dāng)∠BAC= °時(shí),AD=3DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=﹣x2+2nx﹣n2+n的頂點(diǎn)為P,直線y=分別交x,y軸于點(diǎn)M,N.
(1)若點(diǎn)P在直線MN上,求n的值;
(2)是否存在過(guò)(0,﹣2)的直線與拋物線交于A,B兩點(diǎn)(A點(diǎn)在B點(diǎn)的下方),使AB為定長(zhǎng),若存在,求出AB的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,當(dāng)四邊形MABN的周長(zhǎng)最小時(shí),求n的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com