【題目】如圖,菱形的周長為,,垂足為,,則下列結論中正確的個數(shù)為( )
①;②;③;④.
A. 4個 B. 3個 C. 2個 D. 1個
【答案】B
【解析】
連接AC交BD于O,由菱形的性質求出邊長,設AE=4x,DE=3x,根據(jù)勾股定理得出方程,解方程求出x,得出AE、DE,由菱形的面積=底×高,求出菱形的面積;根據(jù)勾股定理求出BD,得出OD,再由勾股定理求出OA,得出AC,即可得出結論.
連接AC交BD于O,如圖所示:
∵四邊形ABCD是菱形,
∴AB=BC=CD=AD,OA=OC=AC,OB=OD=BD,AC⊥BD,
∵菱形ABCD的周長為20cm,
∴AD=AB=5cm,
∵DE⊥AB,AE:DE=4:3,
則∠AED=90°,
設AE=4xcm,DE=3xcm,
根據(jù)勾股定理得:(4x)2+(3x)2=52,
解得:x=1,
∴AE=4cm,DE=3cm,
∴BE=5-4=1,S菱形=ABDE=5×3=15(cm2),
∴①②③正確;
在Rt△BDE中,根據(jù)勾股定理得:BD=,
∴OD=,
在Rt△AOD中,OA=,
∴AC=2OA=3,
∴④不正確;
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,一副含和角的三角板和如圖擺放,邊與重合,.當點從點出發(fā)沿方向滑動時,點同時從點出發(fā)沿軸正方向滑動.
設點關于的函數(shù)表達式為________.
連接.當點從點滑動到點時,的面積最大值為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某中學有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面積.
(2)若每種植1平方米草皮需要200元,問總共需投入多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系xOy中,橫坐標為a的點A在反比例函數(shù)y1═(x>0)的圖象上,點A′與點A關于點O對稱,一次函數(shù)y2=mx+n的圖象經(jīng)過點A′.
(1)設a=2,點B(4,2)在函數(shù)y1、y2的圖象上.
①分別求函數(shù)y1、y2的表達式;
②直接寫出使y1>y2>0成立的x的范圍;
(2)如圖①,設函數(shù)y1、y2的圖象相交于點B,點B的橫坐標為3a,△AA'B的面積為16,求k的值;
(3)設m=,如圖②,過點A作AD⊥x軸,與函數(shù)y2的圖象相交于點D,以AD為一邊向右側作正方形ADEF,試說明函數(shù)y2的圖象與線段EF的交點P一定在函數(shù)y1的圖象上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)的長方形ABCD中,E點在AD上,且BE=2AE.今分別以BE、CE為折線,將A、D向BC的方向折過去,圖(2)為對折后A、B、C、D、E五點均在同一平面上的位置圖.若圖(2)中,∠AED=15°,則∠BCE的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某玉米種子的價格為元/千克,如果一次購買2千克以上的種子,超過2千克部分的種子價格打8折,某科技人員對付款金額和購買量這兩個變量的對應關系用列表法做了分析,并繪制出了函數(shù)圖象,以下是該科技人員繪制的圖象和表格的不完整資料,已知點A的坐標為,請你結合表格和圖象:
付款金額 | 7.5 | 10 | 12 | ||
購買量(千克) | 1 | 1.5 | 2 | 2.5 | 3 |
(1) , ;
(2)求出當時,關于的函數(shù)解析式;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,D是線段BC的延長線上一點,以AD為一邊在AD的右側作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.
(1)如圖1,點D在線段BC的延長線上移動,若∠BAC=30°,則∠DCE= .
(2)設∠BAC=α,∠DCE=β:
①如圖1,當點D在線段BC的延長線上移動時,α與β之間有什么數(shù)量關系?請說明理由;
②當點D在直線BC上(不與B、C重合)移動時,α與β之間有什么數(shù)量關系?請直接寫出你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在反比例函數(shù)y=(x>0)的圖象上,有點P1,P2,P3,P4,…,它們的橫坐標依次為2,4,6,8,…分別過這些點作x軸與y軸的垂線,圖中所構成的陰影部分的面積從左到右依次記為S1,S2,S3,…,Sn,則S1+S2+S3+…+Sn=_____(用含n的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com