【題目】已知數(shù)軸上兩點(diǎn)對應(yīng)的數(shù)分別是,,為數(shù)軸上三個(gè)動點(diǎn),點(diǎn)從點(diǎn)出發(fā)速度為每秒個(gè)單位,點(diǎn)從點(diǎn)出發(fā)速度為點(diǎn)的倍,點(diǎn)從原點(diǎn)出發(fā)速度為每秒個(gè)單位.
若點(diǎn)向右運(yùn)動,同時(shí)點(diǎn)向左運(yùn)動,求多長時(shí)間點(diǎn)與點(diǎn)相距個(gè)單位?
若點(diǎn)同時(shí)都向右運(yùn)動,求多長時(shí)間點(diǎn)到點(diǎn)的距離相等?
【答案】(1)5秒;(2)秒或秒
【解析】
(1)設(shè)經(jīng)過x秒點(diǎn)M與點(diǎn)N相距54個(gè)單位,由點(diǎn)M從A點(diǎn)出發(fā)速度為每秒2個(gè)單位,點(diǎn)N從點(diǎn)B出發(fā)速度為M點(diǎn)的3倍,得出2x+6x+14=54求出即可;
(2)首先設(shè)經(jīng)過t秒點(diǎn)P到點(diǎn)M,N的距離相等,得出(2t+6)-t=(6t-8)-t或(2t+6)-t=t-(6t-8),進(jìn)而求出即可.
解:(1)設(shè)經(jīng)過x秒點(diǎn)M與點(diǎn)N相距54個(gè)單位.
依題意可列方程為:2x+6x+14=54,
解方程,得x=5.
∴經(jīng)過5秒點(diǎn)與點(diǎn)相距個(gè)單位.
(2)設(shè)經(jīng)過t秒點(diǎn)P到點(diǎn)M,N的距離相等.
(2t+6)-t=(6t-8)-t或(2t+6)-t=t-(6t-8),
t+6=5t-8或t+6=8-5t
或
∴經(jīng)過秒或秒點(diǎn)到點(diǎn)的距離相等
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.
(1)如圖1,已知折痕與邊BC交于點(diǎn)O,連接AP、OP、OA.
①求證:△OCP∽△PDA;
②若△OCP與△PDA的面積比為1:4,求邊AB的長.
(2)若圖1中的點(diǎn)P恰好是CD邊的中點(diǎn),求∠OAB的度數(shù);
(3)如圖2,在(1)的條件下,擦去折痕AO,線段OP,連結(jié)BP,動點(diǎn)M在線段AP⊥(點(diǎn)M與點(diǎn)F、A不重合),動點(diǎn)N在線段AB的延長線上,且BN=PM,連結(jié)MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問當(dāng)點(diǎn)M、N在移動過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;說明理由;若不變,求出線段EF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過A(-1,0)、B(4,5)兩點(diǎn),過點(diǎn)B作BC⊥x軸,垂足為C.
(1)求拋物線的解析式;
(2)求tan∠ABO的值;
(3)點(diǎn)M是拋物線上的一個(gè)點(diǎn),直線MN平行于y軸交直線AB于N,如果以M、N、B、C為頂點(diǎn)的四邊形是平行四邊形,求出點(diǎn)M的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工藝廠計(jì)劃一周生產(chǎn)工藝品2100個(gè),平均每天生產(chǎn)300個(gè),但實(shí)際每天生產(chǎn)量與計(jì)劃相比有出入.下表是某周的生產(chǎn)情況(超產(chǎn)記為正、減產(chǎn)記為負(fù)):
(1)寫出該廠星期一生產(chǎn)工藝品的數(shù)量;
(2)本周產(chǎn)量最多的一天比最少的一天多生產(chǎn)多少個(gè)工藝品?
(3)請求出該工藝廠在本周實(shí)際生產(chǎn)工藝品的數(shù)量;
(4)已知該廠實(shí)行每周計(jì)件工資制,每生產(chǎn)一個(gè)工藝品可得60元,若超額完成任務(wù),則超過部分每個(gè)另獎(jiǎng)50元,少生產(chǎn)一個(gè)扣80元.試求該工藝廠在這一周應(yīng)付出的工資總額.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),為等腰三角形,,點(diǎn)是底邊上的一個(gè)動點(diǎn),,.
(1)用表示四邊形的周長為 ;
(2)點(diǎn)運(yùn)動到什么位置時(shí),四邊形是菱形,請說明理由;
(3)如果不是等腰三角形圖(2),其他條件不變,點(diǎn)運(yùn)動到什么位置時(shí),四邊形是菱形(不必說明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】化簡:
(1)3b+5a-(2a-4b )
(2)化簡求值:7a2b+2(2a2b-3ab2)-(4a2b-ab2),其中a,b滿足|a+2|+(b)2 =0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明用四根竹棒扎成如圖所示的風(fēng)箏框架,已知AB=CD,AD=CB,下列判斷不正確的是( )
A. ∠A=∠CB. ∠ABC=∠CDA
C. ∠ABD=∠CDBD. ∠ABC=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,對角線AC,BD相交于點(diǎn)O,∠AOB=60°,AB=6.
求:(1)求這個(gè)矩形對角線的長;
(2)BC的長;
(3)矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD為正方形,已知點(diǎn)A(﹣6,0),D(﹣7,3),點(diǎn)B、C在第二象限內(nèi).
(1)求點(diǎn)B的坐標(biāo)。
(2)將正方形ABCD以每秒1個(gè)單位的速度沿x軸向右平移t秒,若存在某一時(shí)刻t,使在第一象限內(nèi)點(diǎn)B、D兩點(diǎn)的對應(yīng)點(diǎn)B′、D′正好落在某反比例函數(shù)的圖象上,請求出此時(shí)t的值以及這個(gè)反比例函數(shù)的解析式;
(3)在(2)的情況下,問是否存在x軸上的點(diǎn)P和反比例函數(shù)圖象上的點(diǎn)Q,使得以P、Q、B′、D′四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出符合題意的點(diǎn)P、Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com