【題目】已知成正比例,時(shí),.

(1)的函數(shù)關(guān)系式;

(2)當(dāng)時(shí),的值;

(3)將所得函數(shù)圖象平移,使它過點(diǎn)(2, 1).求平移后直線的解析式.

【答案】1y=2x+3;(22;(3y=2x-5.

【解析】

1)根據(jù)題意設(shè)yx的關(guān)系式為y-3=kxk≠0);然后利用待定系數(shù)法求一次函數(shù)解析式;

(2)x=-代入一次函數(shù)解析式可求得

(3)設(shè)平移后直線的解析式為y=2x+m,把點(diǎn)(2, 1)代入求出m的值,即可求出平移后直線的解析式

1)設(shè)y-3=kx,則

2k=7-3,解得:k2

yx的函數(shù)關(guān)系式:y=2x+3;

2)當(dāng)x=-時(shí), y2

3)設(shè)平移后直線的解析式為:y=2x+m,過點(diǎn)(2,﹣1

所以,4+m=-1,得:m=-5,

解析式為:y=2x-5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一期間,部分同學(xué)隨家長一同到某公園游玩,下面是購買門票時(shí),甲同學(xué)與其爸爸的對話(如圖),試根據(jù)圖中的信息,解決下列問題:

1)本次共去了幾個(gè)成人,幾個(gè)學(xué)生?

2)甲同學(xué)所說的另一種購票方式,是否可以省錢?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,E、F是平行四邊行ABCD的對角線AC上的 兩點(diǎn),AE=CF。

求證:(1)△ADF≌△CBE

(2)EB∥DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】快車與慢車分別從甲乙兩地同時(shí)相向出發(fā),勻速而行,快車到達(dá)乙地后停留 1h,然后按原路原速返回, 快車比慢車晚 1h 到達(dá)甲地,快慢兩車距各自出發(fā)地的路程 y(km)與所用的時(shí)間 x(h)的關(guān)系如圖所示.

1)甲乙兩地之間的路程為 km;快車的速度為 km/h慢車的速度為 km/h

2)出發(fā) h,快慢兩車距各自出發(fā)地的路程相等;(寫出解答過程快慢兩車出發(fā) h 相距 150km.(寫出解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為4的正方形AOCD的頂點(diǎn)A、C分別在y軸和x軸上,點(diǎn)P的坐標(biāo)為(2,0),以點(diǎn)P為圓心,OP的長為半徑向正方形內(nèi)部作一半圓,交線段DF于點(diǎn)F,線段DF的延長線交y軸于點(diǎn)EDF=DC.

(1)求證:DF是半圓P的切線;

(2)求線段DF所在直線的解析式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地有A,B,C三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時(shí)情況,在每條線路上隨機(jī)選取了500個(gè)班次的公交車,收集了這些班次的公交車用時(shí)(單位:分鐘)的數(shù)據(jù),統(tǒng)計(jì)如下:

公交車用時(shí)

公交車用時(shí)的頻數(shù)

線路

合計(jì)

A

59

151

166

124

500

B

50

50

122

278

500

C

45

265

167

23

500

早高峰期間,乘坐_________(填“A”,“B”“C”)線路上的公交車,從甲地到乙地用時(shí)不超過45分鐘的可能性最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線軸、軸分別交于點(diǎn),,拋物線經(jīng)過點(diǎn),將點(diǎn)向右平移5個(gè)單位長度,得到點(diǎn)

(1)求點(diǎn)的坐標(biāo);

(2)求拋物線的對稱軸;

(3)若拋物線與線段恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市教育局為了了解初二學(xué)生每學(xué)期參加綜合實(shí)踐活動的情況,隨機(jī)抽樣調(diào)查了某校初二學(xué)生一個(gè)學(xué)期參加綜合實(shí)踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖.請你根據(jù)圖中提供的信息,回答下列問題:

1)扇形統(tǒng)計(jì)圖中a的值為   ;

2)補(bǔ)全頻數(shù)分布直方圖;

3)在這次抽樣調(diào)查中,眾數(shù)是   天,中位數(shù)是   天;

4)請你估計(jì)該市初二學(xué)生每學(xué)期參加綜合實(shí)踐活動的平均天數(shù)約是多少?(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,四邊形 OABC 為菱形,對角線 OB、AC 相交于 D 點(diǎn),已知 A點(diǎn)的坐標(biāo)為(10,0),雙曲線 y= x>0 )經(jīng)過 D 點(diǎn),交 BC 的延長線于 E 點(diǎn),且 OBAC=120(OBAC),有下列四個(gè)結(jié)論:①雙曲線的解析式為y=x>0);②E 點(diǎn)的坐標(biāo)是(4,6);③sinCOA=;④EC=;⑤AC+OB=8.其中正確的結(jié)論有( )

A. 4 個(gè) B. 3 個(gè) C. 2 個(gè) D. 1 個(gè)

查看答案和解析>>

同步練習(xí)冊答案