【題目】將兩個全等的直角三角形ABC和DBE按圖①方式擺放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,點E落在AB上,DE所在直線交AC所在直線于點F.
(1)求證:AF+EF=DE;
(2)若將圖①中的△DBE繞點B按順時針方向旋轉(zhuǎn)角α,且0°<α<60°,其它條件不變,請在圖②中畫出變換后的圖形,并直接寫出你在(1)中猜想的結論是否仍然成立;
(3)若將圖①中的△DBE繞點B按順時針方向旋轉(zhuǎn)角β,且60°<β<180°,其它條件不變,如圖③.你認為(1)中猜想的結論還成立嗎?若成立,寫出證明過程;若不成立,請寫出AF、EF與DE之間的關系,并說明理由.
【答案】(1)通過三角形全等來分析CF=EF,進而代換求角(2)圖二(3)不成立,正確的結論是AF-EF=DE
【解析】試題分析:(1)利用旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定得出Rt△BCF≌Rt△BEF,進而得出答案;
(2)利用旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定得出Rt△BCF≌Rt△BEF,進而得出答案;
(3)利用旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定得出Rt△BCF≌Rt△BEF,進而得出答案.
試題解析:(1)如圖①所示,連接BF,
∵BC=BE,
在Rt△BCF和Rt△BEF中
∴Rt△BCF≌Rt△BEF(HL),
∴EF=CF,
∴AF+EF=AC=DE;
(2)如圖②所示:
延長DE交AC與點F,連接BF,
在Rt△BCF和Rt△BEF中
∴Rt△BCF≌Rt△BEF(HL),
∴EF=CF,
∴AF+EF=AC=DE;
(3)如圖③所示:
連接BF,
在Rt△BCF和Rt△BEF中
∴Rt△BCF≌Rt△BEF(HL),
∴EF=CF,
∴AF-FC=AC=DE,
∴AF-EF=DE.
科目:初中數(shù)學 來源: 題型:
【題目】某村為了盡早擺脫貧窮落后的現(xiàn)狀,積極響應國家號召,15位村民集資8萬元,承包了一些土地種植有機蔬菜和水果,種這兩種作物每公頃需要人數(shù)和投入資金如下表:
現(xiàn)有條件下,這15位村民應承包多少公頃土地,怎樣安排能使得每人都有事可做,并且資金正好夠用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形BCDE的各邊分別平行于x軸與y軸,物體甲和物體乙由點A(2,0)同時出發(fā),沿矩形BCDE的邊作環(huán)繞運動,物體甲按逆時針方向以1個單位/秒勻速運動,物體乙按順時針方向以2個單位/秒勻速運動,則兩個物體運動后的第2018次相遇地點的坐標是( )
A. (1,﹣1) B. (2,0) C. (﹣1,1) D. (﹣1,﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,作OD∥BC與過點A的切線交于點D,連接DC并延長交AB的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)若AE=6,CE=2 ,求線段CE、BE與劣弧BC所圍成的圖形面積.(結果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩種商品原來的單價和為100元.因市場變化,甲商品降價10%,乙商品提價40%,調(diào)價后兩種商品的單價和比原來的單價和提高了20%.甲、乙兩種商品原來的單價各是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x、y的方程組,其中﹣3≤a≤1,給出下列結論:
①是方程組的解;
②當a=﹣2時,x+y=0;
③若y≤1,則1≤x≤4;
④若S=3x﹣y+2a,則S的最大值為11.
其中正確的有_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校學生的身高情況,隨機抽取該校男生、女生進行抽樣調(diào)查.已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制成如下統(tǒng)計圖表(單位:cm):
A | x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | x≥170 |
根據(jù)圖表提供的信息,樣本中,身高在160≤x<170之間的女生人數(shù)為( )
A. 8 B. 6 C. 14 D. 16
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com