【題目】在矩形ABCD中,AB=6,AD=10,點E是邊BC的中點,連接AE,若將△ABE沿AE翻折,點B落在點F處,連接FC,則tan∠BCF=

【答案】
【解析】解:∵BC=AD=10,點E是BC的中點, ∴EC=BE=5,
由翻折變換的性質(zhì)可知,BE=FE,∠BEA=∠FEA,
∴EF=EC,
∴∠EFC=∠ECF,
∵∠BEA+∠FEA=∠EFC+∠ECF,
∴∠BEA=∠BCF,
∵tan∠BEA= = ,
∴tan∠BCF=
所以答案是:

【考點精析】掌握矩形的性質(zhì)和翻折變換(折疊問題)是解答本題的根本,需要知道矩形的四個角都是直角,矩形的對角線相等;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD中,對角線AC,BD相交于點O,若E、FAC上兩動點,E、F分別

A、C兩點同時以1cm/s的相同的速度向C、A運動.

(1)四邊形DEBF是平行四邊形嗎?說明你的理由.

(2)BD=10cm,AC=16cm,當(dāng)運動時間t為多少時,

四邊形DEBF為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題
(1)計算:( 2÷(﹣2)3
(2)解方程: =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列網(wǎng)格中建立平面直角坐標(biāo)系如圖,每個小正方形的邊長均為1個單位長度.已知A(1,1)、B(3,4)和C(4,2).

(1)在圖中標(biāo)出點A、B、C.

(2)將點C向下平移3個單位到D點,將點A先向左平移3個單位,再向下平移1個單位到E點,在圖中標(biāo)出D點和E點.

(3)求△EBD的面積S△EBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB為直角,∠AOC為銳角,且OM平分∠BOC,ON平分∠AOC.

(1)如果∠AOC=50°,求∠MON的度數(shù);

(2)如果∠AOC為任意一個銳角,你能求出∠MON的度數(shù)嗎?若能,請求出來,若不能,說明為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使BOC=120°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點O按每秒10°的速度沿逆時針方向旋轉(zhuǎn)一周.在旋轉(zhuǎn)的過程中,假如第t秒時,OA、OC、ON三條射線構(gòu)成相等的角,求此時t的值為多少?

(2)將圖1中的三角板繞點O順時針旋轉(zhuǎn)圖2,使ON在AOC的內(nèi)部,請?zhí)骄浚?/span>AOMNOC之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,對角線ACBD相交于點O,DEAC,AEBD

求證:四邊形AODE是矩形;(2)若AB=6,BCD=120°,求四邊形AODE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩臺智能機器人從同一地點P出發(fā),沿著筆直的路線行走了450cm到點Q.甲比乙先出發(fā),乙出發(fā)一段時間后速度提高為原來的2倍.甲勻速走完全程.兩機器人行走的路程y(cm)與時間x(s)之間的函數(shù)圖象如圖所示.根據(jù)圖象所提供的信息解答下列問題:
(1)乙比甲晚出發(fā)秒,乙提速前的速度是每秒cm,t=;
(2)當(dāng)x為何值時,乙追上了甲?
(3)若兩臺機器人到達終點Q后迅速折返,并保持折返前的速度繼續(xù)勻速行走返回到點P,乙比甲早到多長時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小敏上午800從家里出發(fā),騎車去一家超市購物,然后從這家超市返回家中.小敏離家的路程y(米)和所經(jīng)過的時間x(分)之間的函數(shù)圖象如圖所示.請根據(jù)圖象回答下列問題:

1)小敏去超市途中的速度是多少?在超市逗留了多少時間?

2)小敏幾點幾分返回到家?

查看答案和解析>>

同步練習(xí)冊答案