【題目】“國(guó)慶”期間,某電影院裝修后重新開(kāi)業(yè),試營(yíng)業(yè)期間統(tǒng)計(jì)發(fā)現(xiàn),影院每天售出的電影票張數(shù)y(張)與電影票售價(jià)(元/張)之間滿足一次函數(shù)關(guān)系: , 是整數(shù),影院每天運(yùn)營(yíng)成本為1600元,設(shè)影院每天的利潤(rùn)為w(元)(利潤(rùn)=票房收入運(yùn)營(yíng)成本).
(1)試求w與之間的函數(shù)關(guān)系式;
(2)影院將電影票售價(jià)定為多少時(shí),每天獲利最大?最大利潤(rùn)是多少元?
【答案】(1);(2)32元,最大利潤(rùn)是2624元.
【解析】試題分析:(1)根據(jù)“利潤(rùn)=票房收入-運(yùn)營(yíng)成本”可得函數(shù)解析式;
(2)將函數(shù)解析式配方成頂點(diǎn)式,由30≤x≤60,且x是整數(shù)結(jié)合二次函數(shù)的性質(zhì)求解可得.
試題解析:
解:(1)由題意: ,
得w與之間的函數(shù)關(guān)系式為:
.
(2),
.
是整數(shù), ,
當(dāng)或33時(shí),w取得最大值,最大值為2624.
價(jià)格低更能吸引顧客,定價(jià)32更好.
答:影城將電影票售價(jià)定為32元/張時(shí),每天獲利最大,最大利潤(rùn)是2624元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,射線分別和直線交于點(diǎn),射線分別和直線交于點(diǎn).點(diǎn)在上(點(diǎn)與三點(diǎn)不重合).連接.請(qǐng)你根據(jù)題意畫(huà)出圖形并用等式直接寫(xiě)出、、之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校有A、B兩個(gè)閱覽室,甲、乙、丙三名學(xué)生各自隨機(jī)選擇其中的一個(gè)閱覽室閱讀.
(1)下列事件中,是必然事件的為( )
A.甲、乙同學(xué)都在A閱覽室 B.甲、乙、丙同學(xué)中至少兩人在A閱覽室
C.甲、乙同學(xué)在同一閱覽室 D.甲、乙、丙同學(xué)中至少兩人在同一閱覽室
(2)用畫(huà)樹(shù)狀圖的方法求甲、乙、丙三名學(xué)生在同一閱覽室閱讀的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)分別是A(﹣2,﹣2)、B(﹣4,﹣1)、C(﹣4,﹣4).
(Ⅰ)畫(huà)出△ABC關(guān)于原點(diǎn)O或中心對(duì)稱的△A1B1C1;
(Ⅱ)作出點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A′,若把點(diǎn)A′向右平移a個(gè)單位長(zhǎng)度后落在△A1B1C1的內(nèi)部(不包括頂點(diǎn)和邊).
①在圖中畫(huà)出點(diǎn)A′,并寫(xiě)出點(diǎn)A′坐標(biāo) .
②寫(xiě)出a的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的圖象與軸有兩個(gè)公共點(diǎn).
(1)求的取值范圍,寫(xiě)出當(dāng)取其范圍內(nèi)最大整數(shù)時(shí)拋物線的解析式;
(2)將(1)中所求得的拋物線記為,
①求的頂點(diǎn)的坐標(biāo);
②若當(dāng)時(shí), 的取值范圍是,求的值;
(3)將平移得到拋物線,使的頂點(diǎn)落在以原點(diǎn)為圓心半徑為的圓上,求點(diǎn)與兩點(diǎn)間的距離最大時(shí)的解析式,怎樣平移可以得到所求拋物線?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC 中,AB=AC,D 是直線 BC 上一點(diǎn)(不與點(diǎn) B、C 重合),以 AD 為一邊在 AD的右側(cè)作△ADE,AD=AE,∠DAE=∠BAC,連接 CE.
(1)如圖 1,當(dāng)點(diǎn) D 在線段 BC 上時(shí),求證:△ABD≌△ACE;
(2)如圖 2,當(dāng)點(diǎn) D 在線段 BC 上時(shí),如果∠BAC=90°,求∠BCE 的度數(shù);
(3)如圖 3,若∠BAC=α,∠BCE=β.點(diǎn) D 在線段 CB 的延長(zhǎng)線上時(shí),則α、β之間有怎樣 的數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將正方形置于平面直角坐標(biāo)系中,其中邊在軸上,其余各邊均與坐標(biāo)軸平行.直線沿軸的負(fù)方向以每秒1個(gè)單位的速度平移,在平移的過(guò)程中,該直線被正方形的邊所截得的線段長(zhǎng)為,平移的時(shí)間為(秒),與的函數(shù)圖象如圖2所示,則圖1中的點(diǎn)的坐標(biāo)為__________,圖2中的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在校園文化藝術(shù)節(jié)中,九年級(jí)一班有1名男生和2名女生獲得美術(shù)獎(jiǎng),另有2名男生和2名女生獲得音樂(lè)獎(jiǎng).
(1)從獲得美術(shù)獎(jiǎng)和音樂(lè)獎(jiǎng)的7名學(xué)生中選取1名參加頒獎(jiǎng)大會(huì),求剛好是男生的概率;
(2)分別從獲得美術(shù)獎(jiǎng)、音樂(lè)獎(jiǎng)的學(xué)生中各選取1名參加頒獎(jiǎng)大會(huì),用列表或樹(shù)狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線交y軸于點(diǎn)A,交直線x=6于點(diǎn)B.
(1)填空:拋物線的對(duì)稱軸為x=_________,點(diǎn)B的縱坐標(biāo)為__________(用含a的代數(shù)式表示);
(2)若直線AB與x軸正方向所夾的角為45°時(shí),拋物線在x軸上方,求的值;
(3)記拋物線在A、B之間的部分為圖像G(包含A、B兩點(diǎn)),若對(duì)于圖像G上任意一點(diǎn),總有≤3,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com