【題目】如圖所示,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)分別是A(﹣2,﹣2)、B(﹣4,﹣1)、C(﹣4,﹣4).

(Ⅰ)畫出△ABC關(guān)于原點(diǎn)O或中心對稱的△A1B1C1;

(Ⅱ)作出點(diǎn)A關(guān)于x軸的對稱點(diǎn)A′,若把點(diǎn)A′向右平移a個(gè)單位長度后落在△A1B1C1的內(nèi)部(不包括頂點(diǎn)和邊).

在圖中畫出點(diǎn)A′,并寫出點(diǎn)A′坐標(biāo)   

寫出a的取值范圍為   

【答案】(1)圖形見解析(2)①(﹣2,2);②4<a<6

【解析】試題分析:(1)分別作出△ABC三頂點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn),再順次連接可得;

(2)①根據(jù)軸對稱的定義作出點(diǎn)A′即可得;

②由平移的定義和性質(zhì)即可得.

試題解析:(1)如圖所示,△A1B1C1即為所求;

(2)①如圖所示,點(diǎn)A′的坐標(biāo)為(﹣2,2);

觀察圖形可知:A′A1=4,點(diǎn)A′到BC的距離為6,所以4<a<6,

故答案為:①(﹣2,2);②4<a<6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)長方形運(yùn)動(dòng)場被分隔成A,B,A,B,C共5個(gè)區(qū),A區(qū)是邊長為a m的正方形,C區(qū)是邊長為c m的正方形.

(1)列式表示每個(gè)B區(qū)長方形場地的周長,并將式子化簡;

(2)列式表示整個(gè)長方形運(yùn)動(dòng)場的周長,并將式子化簡;

(3)如果a=40,c=10,求整個(gè)長方形運(yùn)動(dòng)場的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校準(zhǔn)備租用一批汽車,現(xiàn)有甲、乙兩種客車,甲種客車每輛載客量45人,乙種客車每輛載客量30.已知1輛甲種客車和3輛乙種客車共需租金1240元,3輛甲種客車和2輛乙種客車共需租金1760.1輛甲種客車和1輛乙種客車的租金分別是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,∠ABC=45°,OC∥ADADBC的延長線于D,ABOCE

(1)求證:AD是⊙O的切線;

(2)若⊙O的直徑為6,線段BC=2,求∠BAC的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x+1與x軸,y軸分別交于點(diǎn)A和點(diǎn)B,直線l2:y=kx(k≠0)與直線l1在第一象限交于點(diǎn)C.若∠BOC=∠BCO,則k的值為( 。

A. B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣2(k+1)x+k2﹣2k﹣3x軸有兩個(gè)交點(diǎn).

(Ⅰ)求k取值范圍;

(Ⅱ)當(dāng)k取最小整數(shù)時(shí),此二次函數(shù)的對稱軸和頂點(diǎn)坐標(biāo);

(Ⅲ)將()中求得的拋物線在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個(gè)新圖象.請你求出新圖象與直線y=x+m有三個(gè)不同公共點(diǎn)時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國慶期間,某電影院裝修后重新開業(yè),試營業(yè)期間統(tǒng)計(jì)發(fā)現(xiàn),影院每天售出的電影票張數(shù)y(張)與電影票售價(jià)(元/張)之間滿足一次函數(shù)關(guān)系: , 是整數(shù),影院每天運(yùn)營成本為1600元,設(shè)影院每天的利潤為w(元)(利潤=票房收入運(yùn)營成本).

1)試求w之間的函數(shù)關(guān)系式;

2)影院將電影票售價(jià)定為多少時(shí),每天獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線分別與x軸,y軸相交于A,B兩點(diǎn),0為坐標(biāo)原點(diǎn),A點(diǎn)的坐標(biāo)為(4,0)

(1)k的值;

(2)過線段AB上一點(diǎn)P(不與端點(diǎn)重合)x軸,y軸的垂線,乖足分別為M,N.當(dāng)長方形PMON的周長是10時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示, 的角平分線,以點(diǎn)為圓心, 為半徑作圓交的延長線于點(diǎn),交于點(diǎn),交于點(diǎn),且

)求證: ;

)求證:點(diǎn)的中點(diǎn);

)如果,求半徑的長.

查看答案和解析>>

同步練習(xí)冊答案