【題目】如圖,在平面直角坐標系中,直線l1:y=﹣x+1與x軸,y軸分別交于點A和點B,直線l2:y=kx(k≠0)與直線l1在第一象限交于點C.若∠BOC=∠BCO,則k的值為(  )

A. B. C. D. 2

【答案】B

【解析】

CCDOAD,利用直線l1yx+1,即可得到A(2,0),B(0,1),AB3。依據(jù)CDBO,可得ODAOCDBO,進而得到C),代入直線l2ykx,可得k的值.

如圖,過CCDOAD

直線l1yx+1中,令x=0,則y=1,令y=0,則x=2,即A(2,0),B(0,1),RtAOB中,AB3.

∵∠BOCBCO,CBBO=1,AC=2.

CDBO,ODAO,CDBO,即C),把C)代入直線l2ykx,可得:k,即k

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,AO⊥BC,垂足為點O,⊙O與AC相切于點D,BE⊥AB交AC的延長線于點E,與⊙O相交于G、F兩點.

(1)求證:AB與⊙O相切;

(2)若等邊三角形ABC的邊長是8,求線段BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)填在相應(yīng)的大括號內(nèi):

﹣5,|-|,﹣12,0,﹣3.14,+1.99,﹣(﹣6),

(1)正數(shù)集合:{ …}

(2)負數(shù)集合:{ …}

(3)整數(shù)集合:{ …}

(4)分數(shù)集合:{ …}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校有A、B兩個閱覽室,甲、乙、丙三名學(xué)生各自隨機選擇其中的一個閱覽室閱讀.

(1)下列事件中,是必然事件的為(

A.甲、乙同學(xué)都在A閱覽室 B.甲、乙、丙同學(xué)中至少兩人在A閱覽室

C.甲、乙同學(xué)在同一閱覽室 D.甲、乙、丙同學(xué)中至少兩人在同一閱覽室

(2)用畫樹狀圖的方法求甲、乙、丙三名學(xué)生在同一閱覽室閱讀的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某儲運站現(xiàn)有甲種貨物1530噸,乙種貨物1150噸,安排用一列貨車將這批貨物運往青島,這列貨車可掛A,B兩種不同規(guī)格的貨廂50節(jié).已知甲種貨物35噸和乙種貨物15噸可裝滿一節(jié)A型貨廂,甲種貨物25噸和乙種貨物35噸可裝滿一節(jié)B型貨廂,按此要求安排A,B兩種貨廂的節(jié)數(shù),有哪幾種運輸方案?請設(shè)計出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,△ABC的三個頂點分別是A(﹣2,﹣2)、B(﹣4,﹣1)、C(﹣4,﹣4).

(Ⅰ)畫出△ABC關(guān)于原點O或中心對稱的△A1B1C1

(Ⅱ)作出點A關(guān)于x軸的對稱點A′,若把點A′向右平移a個單位長度后落在△A1B1C1的內(nèi)部(不包括頂點和邊).

在圖中畫出點A′,并寫出點A′坐標   

寫出a的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的圖象與軸有兩個公共點.

1)求的取值范圍,寫出當取其范圍內(nèi)最大整數(shù)時拋物線的解析式;

2)將(1)中所求得的拋物線記為,

①求的頂點的坐標;

②若當時, 的取值范圍是,求的值;

3)將平移得到拋物線,使的頂點落在以原點為圓心半徑為的圓上,求點兩點間的距離最大時的解析式,怎樣平移可以得到所求拋物線?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將正方形置于平面直角坐標系中,其中邊在軸上,其余各邊均與坐標軸平行.直線沿軸的負方向以每秒1個單位的速度平移,在平移的過程中,該直線被正方形的邊所截得的線段長為,平移的時間為(秒),的函數(shù)圖象如圖2所示,則圖1中的點的坐標為__________,圖2中的值為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,若平分,平分,且,則___________°.

查看答案和解析>>

同步練習(xí)冊答案