【題目】如圖,AC為⊙O的直徑,B為AC延長線上一點(diǎn),且∠BAD=∠ABD=30°,BC=1,AD為⊙O的弦,連結(jié)BD,連結(jié)DO并延長交⊙O于點(diǎn)E,連結(jié)BE交⊙O于點(diǎn)M.
(1)求證:直線BD是⊙O的切線;
(2)求⊙O的半徑OD的長;
(3)求線段BM的長.
【答案】(1)證明見解析;(2)⊙O的半徑OD的長為1;(3)線段BM的長為
【解析】
(1)利用等腰三角形的性質(zhì)及三角形的內(nèi)角和求得∠ODB=90°,按照切線的判定定理可得答案;
(2)利用30°角所對的直角邊等于斜邊的一半及圓的半徑相等可得答案;
(3)先由勾股定理求得BE的長,再連接DM,利用有兩個(gè)角相等的三角形相似可判定△BMD∽△BDE,然后利用相似三角形的性質(zhì)可得比例式,從而求得答案.
解:(1)證明:∵OA=OD,∠BAD=∠ABD=30°,
∴∠BAD=∠ADO=30°,
∴∠DOB=∠BAD+∠ADO=60°,
∴∠ODB=∠180°﹣∠DOB﹣∠ABD=90°,
∵OD為⊙O的半徑,
∴直線BD是⊙O的切線;
(2)∵∠ODB=90°,∠ABD=30°,
∴OD=OB,
∵OC=OD,
∴BC=OC=1,
∴⊙O的半徑OD的長為1;
(3)∵OD=1,
∴DE=2,BD=,
∴BE=
如圖,連接DM,
∵DE為⊙O的直徑,
∴∠DME=90°,
∴∠DMB=90°,
∵∠EDB=90°,
∴∠EDB=∠DME,
又∵∠DBM=∠EBD,
∴△BMD∽△BDE,
∴
∴BM=
∴線段BM的長為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣1,0)、(0,﹣3).
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)E為拋物線的頂點(diǎn),點(diǎn)C為拋物線與x軸的另一交點(diǎn),點(diǎn)D為y軸上一點(diǎn),且DC=DE,求出點(diǎn)D的坐標(biāo);
(3)在第二問的條件下,在直線DE上存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似,請你直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為A(s,t)(其中s≠0).
(1)若拋物線經(jīng)過(2,7)和(-3,37)兩點(diǎn),且s=1.
①求拋物線的解析式;
②若n>1,設(shè)點(diǎn)M(n,y1),N(n+1,y2)在拋物線上,比較y1,y2的大小關(guān)系,并說明理由;
(2)若a=2,c=-2,直線y=2x+m與拋物線y=ax2+bx+c的交于點(diǎn)P和點(diǎn)Q,點(diǎn)P的橫坐標(biāo)為h,點(diǎn)Q的橫坐標(biāo)為h+3,求出b和h的函數(shù)關(guān)系式;
(3)若點(diǎn)A在拋物線y=上,且2≤s<3時(shí),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,對角線AC,BD交于點(diǎn)O,點(diǎn)E,F分別在AB,BD上,且△ADE≌△FDE,DE交AC于點(diǎn)G,連接GF.得到下列四個(gè)結(jié)論:①∠ADG=22.5°;②S△AGD=S△OGD;③BE=2OG;④四邊形AEFG是菱形,其中正確的結(jié)論是_____.(填寫所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點(diǎn),分別在軸、軸上,對角線軸,反比例函數(shù)的圖象經(jīng)過矩形對角線的交點(diǎn),若點(diǎn),,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近幾年,中學(xué)生過生日互送禮物甚至有部分家長為慶賀孩子生日大擺宴席攀比之風(fēng)已成為社會(huì)關(guān)注熱點(diǎn).為此某媒體記者就中學(xué)生攀比心理的成因?qū)δ呈谐菂^(qū)若干名市民進(jìn)行了調(diào)查,調(diào)查結(jié)果分為四組:社會(huì)環(huán)境的影響;學(xué)校正確引導(dǎo)的缺失;家長榜樣示范的不足;其他.并將調(diào)查結(jié)果繪制成如下條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖均不完整
請根據(jù)圖中提供的信息,解答下列問題:
扇形統(tǒng)計(jì)圖中,B組所在扇形的圓心角度數(shù)是______;
將條形統(tǒng)計(jì)圖補(bǔ)充完整;
根據(jù)抽樣調(diào)查結(jié)果,請你估計(jì)該市城區(qū)120000名市民中有多少名市民持C組觀點(diǎn);
針對現(xiàn)在部分同學(xué)因舉行生日宴會(huì)而造成極大浪費(fèi)的現(xiàn)象,請你簡單說說中學(xué)生大操大辦慶祝生日的危害性,并提出合理化的建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子中放有三張卡片,每張卡片上寫有1個(gè)實(shí)數(shù),分別為1,2,3.(卡片除了實(shí)數(shù)不同外,其余均相同)
(1)從盒子中隨機(jī)抽取一張卡片,請直接寫出卡片上的實(shí)數(shù)是2的概率_______;
(2)先從盒子中隨機(jī)抽取一張卡片,將卡片上的實(shí)數(shù)作為點(diǎn)P的橫坐標(biāo),卡片不放回,再隨機(jī)抽取一張卡片,將卡片上的實(shí)數(shù)作為點(diǎn)P的縱坐標(biāo),兩次抽取的卡片上的實(shí)數(shù)分別作為點(diǎn)P的橫縱坐標(biāo).請你用列表法或樹狀圖法,求出點(diǎn)P在反比例函數(shù)上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)請直接寫出點(diǎn)A坐標(biāo)______,點(diǎn)B坐標(biāo)________;
(2)點(diǎn)C是直線AB上一個(gè)動(dòng)點(diǎn),當(dāng)△AOC的面積是△BOC的面積的2倍時(shí),求點(diǎn)C的坐標(biāo);
(3)點(diǎn)D為直線AB上的一個(gè)動(dòng)點(diǎn),在平面內(nèi)找另一個(gè)點(diǎn)E,且以O、B、D、E為頂點(diǎn)的四邊形是菱形,請直接寫出滿足條件的菱形的周長_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn),交y軸于點(diǎn)C,AB=4,對稱軸是直線x=﹣1.
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)連接AC,E是線段OC上一點(diǎn),點(diǎn)E關(guān)于直線x=﹣1的對稱點(diǎn)F正好落在AC上,求點(diǎn)F的坐標(biāo);
(3)動(dòng)點(diǎn)M從點(diǎn)O出發(fā),以每秒2個(gè)單位長度的速度向點(diǎn)A運(yùn)動(dòng),到達(dá)點(diǎn)A即停止運(yùn)動(dòng),過點(diǎn)M作x軸的垂線交拋物線于點(diǎn)N,交線段AC于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
①連接BC,若△BOC與△AMN相似,請直接寫出t的值;
②△AOQ能否為等腰三角形?若能,求出t的值;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com