【題目】如圖,已知拋物線y=x2+bx+c與x軸交于A、B兩點,交y軸于點C,AB=4,對稱軸是直線x=﹣1.
(1)求拋物線的解析式及點C的坐標;
(2)連接AC,E是線段OC上一點,點E關(guān)于直線x=﹣1的對稱點F正好落在AC上,求點F的坐標;
(3)動點M從點O出發(fā),以每秒2個單位長度的速度向點A運動,到達點A即停止運動,過點M作x軸的垂線交拋物線于點N,交線段AC于點Q.設運動時間為t(t>0)秒.
①連接BC,若△BOC與△AMN相似,請直接寫出t的值;
②△AOQ能否為等腰三角形?若能,求出t的值;若不能,請說明理由.
【答案】(1)C(0,-3);(2)F(-2,-1);(3)①t=1;②t=或.
【解析】
(1)點、關(guān)于直線對稱,,由對稱性質(zhì)知,,即可求解;
(2)設點,則點,將點的坐標代入直線的表達式,即可求解;
(3)①當與相似,,即或,即可求解;②分、、三種情況,分別求解即可.
解:(1)點、關(guān)于直線對稱,,
由對稱性質(zhì)知,,
將點、的坐標代入中,得:,
令,則,故點;
(2)設直線的表達式為:,則,解得:,
故直線的表達式為:;
設點,則點,
將點的坐標代入直線的表達式的:,
故點;
(3)①秒時,點的坐標為,則點,
點,,即,
則,,
與相似,
,即或,
解得:或1或(舍去和,
故;
②點,點,
則,,,
當時,即,解得:(舍去;
當時,同理可得:;
當時,同理可得:或(舍去);
綜上,或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC為⊙O的直徑,B為AC延長線上一點,且∠BAD=∠ABD=30°,BC=1,AD為⊙O的弦,連結(jié)BD,連結(jié)DO并延長交⊙O于點E,連結(jié)BE交⊙O于點M.
(1)求證:直線BD是⊙O的切線;
(2)求⊙O的半徑OD的長;
(3)求線段BM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在中,點分別在上,且.設的邊上的高為,的邊上的高為.
(1)若、的面積分別為3,1,則 ;
(2)設、、四邊形的面積分別為,求證:;
(3)如圖②,在中,點分別在上,點在上,且, . 若、、的面積分別為3, 7, 5,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在半圓上,點D在圓外,DE⊥AB于點E交AC于點F,且DF=CD
(1)求證:CD是⊙O的切線;
(2)若點F是AC的中點,DF=2EF=2,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,P是AB邊上的任意一點,過P點作PE⊥AB,交AD于E,連結(jié)CE、CP.已知∠A=60o .
(1)試探究,當△CPE≌△CPB時,CD與DE的數(shù)量關(guān)系;
(2)若BC=4,AB=3,當AP的長為多少時,△CPE的面積最大,并求出面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】雙曲線(k為常數(shù),且)與直線交于兩點.
(1)求k與b的值;
(2)如圖,直線AB交x軸于點C,交y軸于點D,若點E為CD的中點,求△BOE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線經(jīng)過x軸上的點A(1,0)和點B及y軸上的點C,經(jīng)過B、C兩點的直線為.
①求拋物線的解析式.
②點P從A出發(fā),在線段AB上以每秒1個單位的速度向B運動,同時點E從B出發(fā),在線段BC上以每秒2個單位的速度向C運動.當其中一個點到達終點時,另一點也停止運動.設運動時間為t秒,求t為何值時,△PBE的面積最大并求出最大值.
③過點A作于點M,過拋物線上一動點N(不與點B、C重合)作直線AM的平行線交直線BC于點Q.若點A、M、N、Q為頂點的四邊形是平行四邊形,求點N的橫坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,點O在△ABC的BC邊上,⊙O經(jīng)過點A、C,且與BC相交于點 D.點E是下半圓弧的中點,連接AE交BC于點F,已知AB=BF.
(1)求證:AB是⊙O的切線;
(2)若OC=3,OF=1,求cosB的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,正方形ABCD中,點E是BC的中點,過點B作BG⊥AE于點G,過點C作CF垂直BG的延長線于點H,交AD于點F
(1)求證:△ABG≌△BCH;
(2)如圖2,連接AH,連接EH并延長交CD于點I;
求證:① AB2=AE·BH;② 求的值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com