【題目】如圖,在Rt△ABC中,∠B=45°,AB=AC,點D為BC的中點,直角∠MDN繞點D旋轉(zhuǎn),DM,DN分別與邊AB,AC交于E,F兩點,下列結(jié)論:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正確結(jié)論是( )
A.①②③B.②③④C.①②④D.①②③④
【答案】A
【解析】
根據(jù)等腰直角三角形的性質(zhì)可得∠CAD=∠B=45°,根據(jù)同角的余角相等求出∠ADF=∠BDE,然后利用“角邊角”證明△BDE和△ADF全等,判斷出③正確;根據(jù)全等三角形對應(yīng)邊相等可得DE=DF、BE=AF,從而得到△DEF是等腰直角三角形,判斷出①正確;再求出AE=CF,判斷出②正確;根據(jù)BE+CF=AF+AE,利用三角形的任意兩邊之和大于第三邊可得BE+CF>EF,判斷出④錯誤.
解:∵∠B=45°,AB=AC,
∴△ABC是等腰直角三角形,
∵點D為BC中點,
∴AD=CD=BD,AD⊥BC,∠CAD=45°,
∴∠CAD=∠B,
∵∠MDN是直角,
∴∠ADF+∠ADE=90°,
∵∠BDE+∠ADE=∠ADB=90°,
∴∠ADF=∠BDE,
在△BDE和△ADF中,
∴△BDE≌△ADF(ASA),
故③正確;
∴DE=DF、BE=AF,
∴△DEF是等腰直角三角形,
故①正確;
∵AE=AB-BE,CF=AC-AF,
∴AE=CF,
故②正確;
∵BE+CF=AF+AE
∴BE+CF>EF,
故④錯誤;
綜上所述,正確的結(jié)論有①②③;
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,F是CD上一點,E是BF上一點,連接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,則下列結(jié)論中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正確的個數(shù)有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線p: 的頂點為C,與x軸相交于A、B兩點(點A在點B左側(cè)),點C關(guān)于x軸的對稱點為C′,我們稱以A為頂點且過點C′,對稱軸與y軸平行的拋物線為拋物線p的“夢之星”拋物線,直線AC′為拋物線p的“夢之星”直線.若一條拋物線的“夢之星”拋物線和“夢之星”直線分別是和y=2x+2,則這條拋物線的解析式為____________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC 中,AB=7,AC=9,BC=8cm,BP、CP 分別是∠ABC 和∠ACB 的平分線,且 PD∥AB,PE∥AC,則△PDE 的周長是_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E在BC的延長線上,G是AC上一點,且CG=CD,F是GD上一點,且DF=DE.若∠A=100°,則∠E的大小為_____度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定四邊形ABCD為平行四邊形的是( 。
A.AB∥CD,AD∥BCB.OA=OC,OB=OD
C.AD=BC,AB∥CDD.AB=CD,AD=BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“和諧號”高鐵列車的小桌板收起時可近似看作與地面垂直,展開小桌板使桌面保持水平,其示意圖如圖所示.連接OA,此時OA=75 cm,CB⊥AO,∠AOB=∠ACB=37°,且桌面寬OB與BC的長度之和等于OA的長度.求支架BC的長度(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個反比例函數(shù)和在第一象限內(nèi)的圖象如圖所示,點P在的圖象上,PC⊥軸于點C,交的圖象于點A,PC⊥軸于點D,交的圖象于點B. 當點P在的圖象上運動時,以下結(jié)論:
①
②的值不會發(fā)生變化
③PA與PB始終相等
④當點A是PC的中點時,點B一定是PD的中點.
其中一定不正確的是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com